Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2016_23_3_a9, author = {D. V. Lukyanenko and V. T. Volkov and N. N. Nefedov and L. Recke and K. Schneider}, title = {Analytic-numerical approach to solving singularly perturbed parabolic equations with the use of~dynamic~adapted meshes}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {334--341}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a9/} }
TY - JOUR AU - D. V. Lukyanenko AU - V. T. Volkov AU - N. N. Nefedov AU - L. Recke AU - K. Schneider TI - Analytic-numerical approach to solving singularly perturbed parabolic equations with the use of~dynamic~adapted meshes JO - Modelirovanie i analiz informacionnyh sistem PY - 2016 SP - 334 EP - 341 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a9/ LA - en ID - MAIS_2016_23_3_a9 ER -
%0 Journal Article %A D. V. Lukyanenko %A V. T. Volkov %A N. N. Nefedov %A L. Recke %A K. Schneider %T Analytic-numerical approach to solving singularly perturbed parabolic equations with the use of~dynamic~adapted meshes %J Modelirovanie i analiz informacionnyh sistem %D 2016 %P 334-341 %V 23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a9/ %G en %F MAIS_2016_23_3_a9
D. V. Lukyanenko; V. T. Volkov; N. N. Nefedov; L. Recke; K. Schneider. Analytic-numerical approach to solving singularly perturbed parabolic equations with the use of~dynamic~adapted meshes. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 3, pp. 334-341. http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a9/
[1] G. I. Shishkin, “Grid approximation of a singularly perturbed quasilinear equation in the presence of a transition layer”, Russian Acad. Sci. Dokl. Math., 47:1 (1993), 83–88 | MR | Zbl
[2] E. O'Riordan, J. Quinn, “Numerical method for a nonlinear singularly perturbed interior layer problem”, Lectures Notes in Computational Science and Engeneering, 81 (2011), 187–195 | DOI | MR
[3] E. O'Riordan, J. Quinn, “Parameter-uniform numerical method for some linear and nonlinear singularly perturbed convection-diffusion boundary turning point problems”, BIT Numerical Mathematics, 51:2 (2011), 317–337 | DOI | MR | Zbl
[4] N. Kopteva, M. Stynes, “Stabilised approximation of interior-layer solutions of a singularly perturbed semilinear reaction-diffusion problem”, Numerische Mathematik, 119:4 (2011), 787–810 | DOI | MR | Zbl
[5] N. Kopteva, E. O'Riordan, “Shishkin meshes in the numerical solution of singularly perturbed differential equations”, International Journal of Numerical Analysis and Modeling, 7:3 (2010), 393–415 | MR | Zbl
[6] N. Kopteva, “Numerical analysis of a 2D singularly perturbed semilinear reaction-diffusion problem”, Lecture Notes in Computer Science, 5434, 2009, 80–91 | DOI | Zbl
[7] P. A. Farrell, E. O'Riordan, G. I. Shishkin, “A class of singularly perturbed semilinear differential equations with interior layers”, Mathematics of Computation, 74:252 (2005), 1759–1776 | DOI | MR | Zbl
[8] G. I. Shishkin, “Necessary conditions for $\varepsilon$-uniform convergence of finite difference schemes for parabolic equations with moving boundary layers”, Computational Mathematics and Mathematical Physics, 47:10 (2007), 1636–1655 | DOI | MR
[9] G. I. Shishkin, L. P. Shishkina, P. W. Hemker, “A Class of Singularly Perturbed Convection-Diffusion Problems with a Moving Interior Layer. An a Posteriori Adaptive Mesh Technique”, Comput. Meth. Appl. Math., 4:1 (2004), 105–127 | DOI | MR | Zbl
[10] G. I. Shishkin, “Grid Approximation of a Singularly Perturbed Parabolic Equation on a Composite Domain in the case of a Concentrated Source on a Moving Interface”, Computational Mathematics and Mathematical Physics, 43:12 (2003), 1738–1755 | MR | Zbl
[11] J. Quinn, “A numerical method for a nonlinear singularly perturbed interior layer problem using an approximate layer location”, Computational and Applied Mathematics, 290:15 (2015), 500–515 | DOI | MR | Zbl
[12] V. T. Volkov, N. N. Nefedov, “Development of the Asymptotic Method of Differential Inequalities for Investigation of Periodic Contrast Structures in Reaction-Diffusion Equations”, Computational Mathematics and Mathematical Physics, 46:4 (2006), 585–593 | DOI | MR | Zbl
[13] N. N. Nefedov and L. Recke and K. R. Schneider, “Existence and asymptotic stability of periodic solutions with an interior layer of reaction-advection-diffusion equations”, Journal of Mathematical Analysis and Applications, 405 (2013), 90–103 | DOI | MR | Zbl
[14] V. T. Volkov, N. N. Nefedov, “Asymptotic-numerical investigation of generation and motion of fronts in phase transition models”, Lecture Notes in Computer Science, 8236, 2013, 524–531 | DOI | MR | Zbl