The application of the differential inequalities method for proving the existence of moving front solution of the parabolic equations system
Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 3, pp. 317-325.

Voir la notice de l'article provenant de la source Math-Net.Ru

Investigations of initial boundary value problems for parabolic equations solutions are an important component of mathematical modeling. In this regard of special interest for mathematical modeling are the boundary value problem solutions that undergo sharp changes in any area of space. Such areas are called internal transitional layers. In case when the position of a transitional layer changes over time, the solution of a parabolic equation behaves as a moving front. For the purpose of proving the existence of such initial boundary value problem solutions, the method of differential inequalities is very effective. According to this method the so-called upper and lower solutions are to be constructed for the initial boundary value problem. The essence of an asymptotic method of differential inequalities is in receiving the upper and lower solutions as modifications of asymptotic submissions of the solutions of boundary value problems. The existence of the upper and lower solutions is a sufficient condition of existence of a solution of a boundary value problem. While proving the differential inequalities the so-called "quasimonotony" condition is essential. In the present work it is considered how to construct the upper and lower solutions for the system of the parabolic equations under various conditions of quasimonotony.
Keywords: parabolic equations system, internal transitional layer, differential inequalities method.
@article{MAIS_2016_23_3_a7,
     author = {N. T. Levashova and A. A. Mel'nikova and S. V. Bytsyura},
     title = {The application of the differential inequalities method for proving the existence of moving front solution of the parabolic equations system},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {317--325},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a7/}
}
TY  - JOUR
AU  - N. T. Levashova
AU  - A. A. Mel'nikova
AU  - S. V. Bytsyura
TI  - The application of the differential inequalities method for proving the existence of moving front solution of the parabolic equations system
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2016
SP  - 317
EP  - 325
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a7/
LA  - ru
ID  - MAIS_2016_23_3_a7
ER  - 
%0 Journal Article
%A N. T. Levashova
%A A. A. Mel'nikova
%A S. V. Bytsyura
%T The application of the differential inequalities method for proving the existence of moving front solution of the parabolic equations system
%J Modelirovanie i analiz informacionnyh sistem
%D 2016
%P 317-325
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a7/
%G ru
%F MAIS_2016_23_3_a7
N. T. Levashova; A. A. Mel'nikova; S. V. Bytsyura. The application of the differential inequalities method for proving the existence of moving front solution of the parabolic equations system. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 3, pp. 317-325. http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a7/

[1] FitzHugh R. A., “Impulses and physiological states in theoretical model of nerve membrane”, Biophys. J., 1 (1961), 445–466 | DOI

[2] Murray J. D., Mathematical Biology II: Spatial Models and Biomedical Applications, Third Edition, Springer, 2003 | MR

[3] Sidorova A. E., Levashova N. T., Melnikova A. A., Yakovenko L. V, “A model of a human dominated urban ecosystem as an active medium”, Biophysics, 60:3 (2015), 466–473 | DOI | MR

[4] Butuzov V. F., Nedelko I. V., “Step-type contrast structure in a system of two singularly perturbed parabolic equations”, Matem. Mod., 60:3 (2001), 23–42 | MR

[5] Levashova N. T., Melnikova A. A., “Step-like contrast structure in a singularly perturbed system of parabolic equations”, Differential Equations, 51:3 (2015), 342–361 | DOI | DOI | MR | Zbl

[6] Fife P. C., McLeod J. B., “The Approach of Solutions of Nonlinear Diffusion. Equations to Travelling Front Solutions”, Arch. ration. mech. anal., 65:4 (1977), 335–361 | DOI | MR | Zbl

[7] Pao C. V., Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992 | MR | Zbl

[8] Volkov V. T., Nefedov N. N., “Development of the asymptotic method of differential inequalities for investigation of periodic contrast structures in reaction-diffusion equations”, Zh. Vychisl. Mat. Mat. Fiz, 46:4 (2006), 585–593 | MR | Zbl

[9] Bozhevol'nov Yu. V., Nefedov N. N., “Front motion in a parabolic reaction-diffusion problem”, Zh. Vychisl. Mat. Mat. Fiz, 50:2 (2010), 264–273 | MR | Zbl

[10] Antipov E. A., Levashova N. T., Nefedov N. N., “Asymptotics of the front motion in the reaction-diffusion-advection problem”, Zh. Vychisl. Mat. Mat. Fiz., 54:10 (2014), 1536–1549 | DOI | MR | Zbl

[11] Vasil'eva A. B., Butuzov V.F, Asimptoticheskie metody v teorii singuljarnyh vozmushhenij, Vysshaja shkola, M., 1990, 208 pp. (in Russian)

[12] Levashova N. T., Petrovskaya E. S., “Primenenie metoda differentsialnykh neravenstv dlya obosnovaniya asimptotiki resheniya sistemy dvukh obyknovennykh differentsialnykh uravneniy v vide kontrastnoy struktury tipa stupenki”, Uchenye zapiski fizicheskogo fakulteta, 2014, no. 1, 1–13 (in Russian)