Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2016_23_3_a7, author = {N. T. Levashova and A. A. Mel'nikova and S. V. Bytsyura}, title = {The application of the differential inequalities method for proving the existence of moving front solution of the parabolic equations system}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {317--325}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a7/} }
TY - JOUR AU - N. T. Levashova AU - A. A. Mel'nikova AU - S. V. Bytsyura TI - The application of the differential inequalities method for proving the existence of moving front solution of the parabolic equations system JO - Modelirovanie i analiz informacionnyh sistem PY - 2016 SP - 317 EP - 325 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a7/ LA - ru ID - MAIS_2016_23_3_a7 ER -
%0 Journal Article %A N. T. Levashova %A A. A. Mel'nikova %A S. V. Bytsyura %T The application of the differential inequalities method for proving the existence of moving front solution of the parabolic equations system %J Modelirovanie i analiz informacionnyh sistem %D 2016 %P 317-325 %V 23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a7/ %G ru %F MAIS_2016_23_3_a7
N. T. Levashova; A. A. Mel'nikova; S. V. Bytsyura. The application of the differential inequalities method for proving the existence of moving front solution of the parabolic equations system. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 3, pp. 317-325. http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a7/
[1] FitzHugh R. A., “Impulses and physiological states in theoretical model of nerve membrane”, Biophys. J., 1 (1961), 445–466 | DOI
[2] Murray J. D., Mathematical Biology II: Spatial Models and Biomedical Applications, Third Edition, Springer, 2003 | MR
[3] Sidorova A. E., Levashova N. T., Melnikova A. A., Yakovenko L. V, “A model of a human dominated urban ecosystem as an active medium”, Biophysics, 60:3 (2015), 466–473 | DOI | MR
[4] Butuzov V. F., Nedelko I. V., “Step-type contrast structure in a system of two singularly perturbed parabolic equations”, Matem. Mod., 60:3 (2001), 23–42 | MR
[5] Levashova N. T., Melnikova A. A., “Step-like contrast structure in a singularly perturbed system of parabolic equations”, Differential Equations, 51:3 (2015), 342–361 | DOI | DOI | MR | Zbl
[6] Fife P. C., McLeod J. B., “The Approach of Solutions of Nonlinear Diffusion. Equations to Travelling Front Solutions”, Arch. ration. mech. anal., 65:4 (1977), 335–361 | DOI | MR | Zbl
[7] Pao C. V., Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992 | MR | Zbl
[8] Volkov V. T., Nefedov N. N., “Development of the asymptotic method of differential inequalities for investigation of periodic contrast structures in reaction-diffusion equations”, Zh. Vychisl. Mat. Mat. Fiz, 46:4 (2006), 585–593 | MR | Zbl
[9] Bozhevol'nov Yu. V., Nefedov N. N., “Front motion in a parabolic reaction-diffusion problem”, Zh. Vychisl. Mat. Mat. Fiz, 50:2 (2010), 264–273 | MR | Zbl
[10] Antipov E. A., Levashova N. T., Nefedov N. N., “Asymptotics of the front motion in the reaction-diffusion-advection problem”, Zh. Vychisl. Mat. Mat. Fiz., 54:10 (2014), 1536–1549 | DOI | MR | Zbl
[11] Vasil'eva A. B., Butuzov V.F, Asimptoticheskie metody v teorii singuljarnyh vozmushhenij, Vysshaja shkola, M., 1990, 208 pp. (in Russian)
[12] Levashova N. T., Petrovskaya E. S., “Primenenie metoda differentsialnykh neravenstv dlya obosnovaniya asimptotiki resheniya sistemy dvukh obyknovennykh differentsialnykh uravneniy v vide kontrastnoy struktury tipa stupenki”, Uchenye zapiski fizicheskogo fakulteta, 2014, no. 1, 1–13 (in Russian)