The asymptotical analysis for the problem of modeling the gas admixture in the surface layer of the atmosphere
Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 3, pp. 283-290.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present work the model boundary value problem for a stationary singularly perturbed reaction-diffusion-advection equation arising at the description of gas impurity transfer processes in an ecosystem "forest – swamp" is considered. Application of a boundary functions method and an asymptotic method of differential inequalities allow to construct an asymptotics of the boundary layer type solution, to prove the existence of the solution with such an asymptotics and its asymptotic stability by Lyapunov as the stationary solution of the corresponding parabolic problem with the definition of local area of boundary layer type solution formation. The latter has a certain importance for applications, since it allows to reveal the solution describing one of the most probable conditions of the ecosystem. In the final part of the work sufficient conditions for existence of solutions with interior transitional layers (contrast structures) are discussed.
Mots-clés : reaction-diffusion-advection type equations
Keywords: contrast structures.
@article{MAIS_2016_23_3_a3,
     author = {M. A. Davydova and N. T. Levashova and S. A. Zakharova},
     title = {The asymptotical analysis for the problem of modeling the gas admixture in the surface layer of the atmosphere},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {283--290},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a3/}
}
TY  - JOUR
AU  - M. A. Davydova
AU  - N. T. Levashova
AU  - S. A. Zakharova
TI  - The asymptotical analysis for the problem of modeling the gas admixture in the surface layer of the atmosphere
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2016
SP  - 283
EP  - 290
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a3/
LA  - ru
ID  - MAIS_2016_23_3_a3
ER  - 
%0 Journal Article
%A M. A. Davydova
%A N. T. Levashova
%A S. A. Zakharova
%T The asymptotical analysis for the problem of modeling the gas admixture in the surface layer of the atmosphere
%J Modelirovanie i analiz informacionnyh sistem
%D 2016
%P 283-290
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a3/
%G ru
%F MAIS_2016_23_3_a3
M. A. Davydova; N. T. Levashova; S. A. Zakharova. The asymptotical analysis for the problem of modeling the gas admixture in the surface layer of the atmosphere. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 3, pp. 283-290. http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a3/

[1] M. A. Davydova, “Existence and Stability of Solutions with Boundary Layers in Multidimensional Singularly Perturbed Reaction-Diffusion-Advection Problems”, Math. Notes, 98:6 (2015), 853–864 | DOI | MR | Zbl

[2] Vasil'eva A.B., Butuzov V.F, Asimptoticheskie metody v teorii singuljarnyh vozmushhenij, Vysshaja shkola, M., 1990, 208 pp. (in Russian) | MR

[3] Nefedov N.N., “The method of differential inequalities for some classes of nonlinear singularly perturbed problems with internal layers”, Differential Equations, 31:7 (1995), 1077–1085 | MR | Zbl

[4] Vasil'eva A.B., Butuzov V.F., Nefedov N.N., “Singularly perturbed problems with boundary and internal layers”, Proceedings of the Steklov Institute of Mathematics, 268 (2010), 258–283 | DOI | MR | Zbl

[5] Pao C.V., Nonlinear Parabolic and Elliptic Equations, Plenum Press, London–New York, 1992, 777 pp. | MR | Zbl