Numerical scheme for the pseudoparabolic singularly perturbed initial-boundary problem with interior transitional layer
Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 3, pp. 259-282.

Voir la notice de l'article provenant de la source Math-Net.Ru

Evolution equations are derived for the contrasting-structure-type solution of the generalized Kolmogorov–Petrovskii–Piskunov (GKPP) equation with the small parameter with high order derivatives. The GKPP equation is a pseudoparabolic equation with third order derivatives. This equation describes numerous processes in physics, chemistry, biology, for example, magnetic field generation in a turbulent medium and the moving front for the carriers in semiconductors. The profile of the moving internal transitional layer (ITL) is found, and an expression for drift speed of the ITL is derived. An adaptive mesh (AM) algorithm for the numerical solution of the initial-boundary value problem for the GKPP equation is developed and rigorously substantiated. AM algorithm for the special point of the first kind is developed, in which drift speed of the ITL in the first order of the asymptotic expansion turns to zero. Sufficient conditions for ITL transitioning through the special point within finite time are formulated. AM algorithm for the special point of the second kind is developed, in which drift speed of the ITL in the first order formally turns to infinity. Substantiation of the AM method is given based on the method of differential inequalities. Upper and lower solutions are derived. The results of the numerical algorithm are presented.
Keywords: singularly perturbed equation, interior transitional layer, finite difference method, asymptotic expansion.
@article{MAIS_2016_23_3_a2,
     author = {A. A. Bykov},
     title = {Numerical scheme for the pseudoparabolic singularly perturbed initial-boundary problem with interior transitional layer},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {259--282},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a2/}
}
TY  - JOUR
AU  - A. A. Bykov
TI  - Numerical scheme for the pseudoparabolic singularly perturbed initial-boundary problem with interior transitional layer
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2016
SP  - 259
EP  - 282
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a2/
LA  - ru
ID  - MAIS_2016_23_3_a2
ER  - 
%0 Journal Article
%A A. A. Bykov
%T Numerical scheme for the pseudoparabolic singularly perturbed initial-boundary problem with interior transitional layer
%J Modelirovanie i analiz informacionnyh sistem
%D 2016
%P 259-282
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a2/
%G ru
%F MAIS_2016_23_3_a2
A. A. Bykov. Numerical scheme for the pseudoparabolic singularly perturbed initial-boundary problem with interior transitional layer. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 3, pp. 259-282. http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a2/

[1] Sveshnikov A. G., Al'shin A. B., Korpusov M. O., Pletner Ju. D., Linejnye i nelinejnye uravnenija sobolevskogo tipa, Fizmatlit, 2007 (in Russian)

[2] Korpusov M. O., Pletner Ju.D., Sveshnikov A. G., “O kvazistacionarnyh processah v provodjashhih sredah bez dispersii”, Zhurnal vychislitelnoj matematiki i matematicheskoj fiziki, 40:8 (2000), 1237–1249 (in Russian) | MR | Zbl

[3] Korpusov M. O., Sveshnikov A. G., “O razrushenii za konechnoe vremja reshenij nachalno-kraevyh zadach dlja uravnenij psevdoparabolicheskogo tipa s psevdolaplassianom”, Zhurnal vychislitelnoj matematiki i matematicheskoj fiziki, 45:2 (2005), 272–286 (in Russian) | MR | Zbl

[4] Alshin A. B., Korpusov M. O., Sveshnikov A. G., Blow-up in Nonlinear Sobolev Type Equations, De Gruyter, 2011 | MR | Zbl

[5] Korpusov M. O., Sveshnikov A. G., “On blow up of generalized Kolmogorov–Pertovskii–Piskunov equation”, Nonlinear Analysis, 71 (2009), 5724–5732 | DOI | MR | Zbl

[6] Pao C. V., Nonlinear parabolic and elliptic equations, Plenum, New York, 1992 | MR | Zbl

[7] Zel'dovich Ja. B., Ruzmajkin A. A., Sokolov D. D., Magnitnye polja v astrofizike, In-t haotich. dinam., Izhevsk, 2006 (in Russian)

[8] Barenblatt G. I., Zel'dovich Ja. B., “Promezhutochnye asimptotiki v matematicheskoj fizike”, Uspehi matematicheskih nauk, 26:2(158) (1971), 115–129 (in Russian) | MR | Zbl

[9] Rozhdestvenskii B. L., Yanenko N. N., Systems of Quasilinear Equations and Their Applications to Gas Dynamics, Translations of Mathematical Monographs, 55, American Mathematical Society, Providence, 1980 (in English) | MR | MR

[10] Martinson L. K., Malov Ju. I., Differencialnye uravnenija matematicheskoj fiziki, Izd-vo MGTU im. Baumana, Moscow, 2002 (in Russian)

[11] Ikeda H., Mimura M., Tsuijikawa T., “Singular Perturbation Approach to Travelling Wave Solutions of the Hodgkin–Huxley Equations and Its Application to Stability Problems”, North-Holland Mathematics Studies, 148, 1987, 1–73 | DOI

[12] Davydov A. S., Biology and quantum mechanics, Pergamon, Oxford, 1982 (in English) | MR | MR

[13] Volpert V., Petrovskii S., “Reaction-diffusion waves in biology”, Physics of Life Reviews, 6 (2009), 267–310 | DOI | MR

[14] Kolmogorov A., Petrovsky I., Piskounoff N., “Etude de L'Equations de la diffusion avec croissance de la quantite de matiere et son application a un probleme biologique”, Bull Univ. Moskou, Ser. Internat. 1A, 1937, 1–25 | Zbl

[15] Ma W.X., Fuchssteiner B., “Explicit and exact solutions to a Kolmogorov–Petrovskii–Piskunov equation”, Int. J. Non-Linear Mechanics, 31:3 (1996), 329–338 | DOI | MR | Zbl

[16] Wei J., Yang J., “Solutions with transition layers and spike in an inhomogeneous phase transition models”, J. Differential Equations, 246 (2009), 3642–3667 | DOI | MR | Zbl

[17] Bozhevol'nov Ju. V., Nefedov N. N., “Dvizhenie fronta v parabolicheskoj zadache reakcija – diffuzija”, Zhurnal vychislitelnoj matematiki i matematicheskoj fiziki, 50:2 (2010), 276–285 (in Russian) | MR | Zbl

[18] Oran E., Boris J., Numerical simulation of reactive flow, Elsevier, N. Y., 1987 | Zbl

[19] Thompson J., Warsi Z., Mastin C., Numerical Grid Generation. Foundations and Applications, Elsevier Sci. Publ. Co., 1985 | MR

[20] Eiseman P. R., “Grid Generation for Fluid Mechanics Computations”, Annual Review of Fluid Mechanics, 17 (1985), 487–522 | DOI | Zbl

[21] Kolbe N. et al., “A study on time discretization and adaptive mesh refinement methods for the simulation of cancer invasion”, Applied Mathematics and Computation, 273 (2016), 353–376 | DOI | MR

[22] Philip B. et al., “Dynamic implicit 3D adaptive mesh refinement for non-equilibrium radiation diffusion”, Journal of Computational Physics, 262 (2014), 17–37 | DOI | MR

[23] Donat R. et al., “Well-Balanced Adaptive Mesh Refinement for shallow water flows”, Journal of Computational Physics, 257-A (2014), 937–953 | DOI | MR

[24] Vasil'eva A. B., Butuzov V. F., Nefedov N. N., “Kontrastnye struktury v singuljarno vozmushhennyh zadachah.”, Fundamental'naja i prikladnaja matematika, 4:3 (1998), 799–851 (in Russian) | MR | Zbl

[25] Bykov A.A, Popov V. Ju., “O vremeni zhizni odnomernyh nestacionarnyh kontrastnyh struktur”, Zhurnal vychislitelnoj matematiki i matematicheskoj fiziki, 309:2 (1999), 280–288 (in Russian) | MR

[26] Nefedov N. N., “Nestacionarnye kontrastnye struktury v sisteme reakcija–diffuzija”, Matematicheskoe modelirovanie, 4:8 (1992), 58–65 (in Russian) | MR | Zbl

[27] Kozhanov A. I., “Nachal'no-kraevaja zadacha dlja uravnenij tipa obobshhennogo uravnenija Bussineska s nelinejnym istochnikom”, Matematicheskie zametki, 65:1 (1999), 70–75 (in Russian) | DOI | MR | Zbl

[28] Kufner A., Fucik S., Nonlinear Differential Equations, Elsevier, Amsterdam–Oxford–N.Y., 1980 | MR | Zbl

[29] Bykov A. A., Nefedov N. N., Sharlo A. S., “Kontrastnye struktury dlja kvazioinejnogo uravnenija sobolevskogo tipa s nesbalansirovannoj nelinejnost'ju”, Zhurnal vychislitelnoj matematiki i matematicheskoj fiziki, 54:8 (2014), 1270–1280 (in Russian) | DOI | MR | Zbl

[30] Bykov A. A., Sharlo A. S., “Nestacionarnye kontrastnye struktury v okrestnosti s osoboj tochki”, Matematicheskoe modelirovanie, 26:8 (2014), 107–125 (in Russian) | MR | Zbl

[31] Kalitkin N. N., Chislennye metody, Nauka, M., 1978 (in Russian) | MR

[32] Samarskij A. A., Teorija raznostnyh shem, Nauka, M., 1977 (in Russian) | MR

[33] Bahvalov N. S., Zhidkov N. P., Kobel'kov G. M., Chislennye metody, Binom. Laboratorija znanij, 2003 (in Russian)

[34] Samarskij A. A., Lazarov R. D., Makarov V. L., Raznostnye shemy dlja differencialnyh uravnenij s obobshhennymi reshenijami, Vysshaja Shkola, M., 1987 (in Russian)

[35] Fox L., Numerical solution of ordinary and partial differential equations, Oxford Press, Oxford, 1962 | MR | Zbl

[36] Lance G. N., Numerical methods for high speed computers, London, 1960 | MR