A Caputo two-point boundary value problem: existence, uniqueness and regularity of a solution
Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 3, pp. 370-376.

Voir la notice de l'article provenant de la source Math-Net.Ru

A two-point boundary value problem on the interval $[0,1]$ is considered, where the highest-order derivative is a Caputo fractional derivative of order $2-\delta$ with $0\delta 1$. A necessary and sufficient condition for existence and uniqueness of a solution $u$ is derived. For this solution the derivative $u'$ is absolutely continuous on $[0,1]$. It is shown that if one assumes more regularity — that $u$ lies in $C^2[0,1]$ — then this places a subtle restriction on the data of the problem.
Keywords: fractional derivative, boundary value problem, uniqueness, regularity.
Mots-clés : existence
@article{MAIS_2016_23_3_a14,
     author = {M. Stynes},
     title = {A {Caputo} two-point boundary value problem: existence, uniqueness and regularity of a solution},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {370--376},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a14/}
}
TY  - JOUR
AU  - M. Stynes
TI  - A Caputo two-point boundary value problem: existence, uniqueness and regularity of a solution
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2016
SP  - 370
EP  - 376
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a14/
LA  - en
ID  - MAIS_2016_23_3_a14
ER  - 
%0 Journal Article
%A M. Stynes
%T A Caputo two-point boundary value problem: existence, uniqueness and regularity of a solution
%J Modelirovanie i analiz informacionnyh sistem
%D 2016
%P 370-376
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a14/
%G en
%F MAIS_2016_23_3_a14
M. Stynes. A Caputo two-point boundary value problem: existence, uniqueness and regularity of a solution. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 3, pp. 370-376. http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a14/

[1] Brunner H., Pedas A., Vainikko G., “Piecewise polynomial collocation methods for linear Volterra integro-differential equations with weakly singular kernels”, SIAM J. Numer. Anal., 39:3 (2001), 957–982, electronic | DOI | MR | Zbl

[2] Diethelm K., The analysis of fractional differential equations. An application-oriented exposition using differential operators of Caputo type, Lecture Notes in Mathematics, 2004, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl

[3] Jin B., Lazarov R., Pasciak J., Rundell W., “Variational formulation of problems involving fractional order differential operators”, Math. Comp., 84:296 (2015), 2665–2700 | DOI | MR | Zbl

[4] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204, Elsevier Science B. V., Amsterdam, 2006 | MR | Zbl

[5] Kopteva N., Stynes M., “An efficient collocation method for a Caputo two-point boundary value problem”, BIT, 55:4 (2015), 1105–1123 | DOI | MR | Zbl

[6] Pedas A., Tamme E., “Piecewise polynomial collocation for linear boundary value problems of fractional differential equations”, J. Comput. Appl. Math., 236:13 (2012), 3349–3359 | DOI | MR | Zbl

[7] Stynes M., Gracia J.-L., “A finite difference method for a two-point boundary value problem with a Caputo fractional derivative”, IMA J. Numer. Anal., 35:2 (2015), 698–721 | DOI | MR | Zbl

[8] Vainikko G., Multidimensional weakly singular integral equations, Lecture Notes in Mathematics, 1549, Springer-Verlag, Berlin, 1993 | DOI | MR | Zbl