Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2016_23_3_a13, author = {S. Franz and H.-G. Roos}, title = {Robust error estimation for singularly perturbed fourth order problems}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {364--369}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a13/} }
TY - JOUR AU - S. Franz AU - H.-G. Roos TI - Robust error estimation for singularly perturbed fourth order problems JO - Modelirovanie i analiz informacionnyh sistem PY - 2016 SP - 364 EP - 369 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a13/ LA - en ID - MAIS_2016_23_3_a13 ER -
S. Franz; H.-G. Roos. Robust error estimation for singularly perturbed fourth order problems. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 3, pp. 364-369. http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a13/
[1] Apel T., Anisotropic finite elements: local estimates and applications, Advances in Numerical Mathematics, B. G. Teubner, Stuttgart, 1999 | MR | Zbl
[2] E. M. de Jager, Jiang Furu, The Theory of Singular Perturbation, North-Holland Series in Applied Mathematics and Mechanics, Elsevier, Amsterdam, 1996 | MR
[3] Falk R. S., Osborn J. E., “Error estimates for mixed methods”, RAIRO Anal. Numér., 14:3 (1980), 249–277 | MR | Zbl
[4] Franz S., Roos H.-G., “Robust error estimation in energy and balanced norms for singularly perturbed fourth order problems”, Comput. Math. Appl., 2016 (to appear) | MR
[5] Girault V., Raviart P.-A., Finite element methods for Navier–Stokes equations: Theory and Algorithms, Springer series in computational mathematics, Springer-Verlag, Berlin–Heidelberg–New York, 1986 | DOI | MR | Zbl
[6] Li J., “Full-Order Convergence of a Mixed Finite Element Method for Fourth-Order Elliptic Equations”, Journal of Mathematical Analysis and Applications, 230:2 (1999), 329–349 | DOI | MR | Zbl
[7] Q. Lin, “A rectangle test for finite element analysis”, Proc. Syst. Sci. Eng., Great Wall (H.K.) Culture Publish Co., 1991, 213–216
[8] Lin Q., Yan N., Zhou A., “A rectangle test for interpolated element analysis”, Proc. Syst. Sci. Eng., Great Wall (H.K.) Culture Publish Co., 1991, 217–229
[9] Lin R., Stynes M., “A balanced finite element method for singularly perturbed reaction-diffusion problems”, SIAM J. Numerical Analysis, 50:5 (2012), 2729–2743 | DOI | MR | Zbl
[10] Matthies G., “Local projection stabilisation for higher order discretisations of convection-diffusion problems on Shishkin meshes”, Adv. Comput. Math., 30:4 (2009), 315–337 | DOI | MR | Zbl
[11] Monk P., “A mixed finite element method for the biharmonic equation”, SIAM J. Numer. Anal., 24:4 (1987), 737–749 | DOI | MR | Zbl
[12] R. E. O'Malley Jr., Introduction to singular perturbations, Applied Mathematics and Mechanics, 14, Academic Press, New York–London, 1974 | MR | Zbl
[13] Roos H.-G., Schopf M., “Convergence and stability in balanced norms of finite element methods on Shishkin meshes for reaction-diffusion problems”, ZAMM, 95:6 (2015), 551–565 | DOI | MR | Zbl
[14] Roos H.-G., Stynes M., Tobiska L., Robust numerical methods for singularly perturbed differential equations, Springer Series in Computational Mathematics, 24, Second ed., Springer-Verlag, Berlin, 2008 | MR | Zbl
[15] Shishkin G. I., Grid Approximations of Singularly Perturbed Elliptic and Parabolic Equations, Russian Academy of Sciences, Ural Section, Ekaterinburg, 1992 (in Russian)
[16] Yan N., Superconvergence analysis and a posteriori error estimation in finite element methods, Series in Information and Computational Science, 40, Science Press, Beijing, 2008
[17] Zhang Zh., “Finite element superconvergence on Shishkin mesh for 2-d convection-diffusion problems”, Math. Comp., 72:243 (2003), 1147–1177 | DOI | MR | Zbl