Numerical solution of a singularly perturbed problem on a circular domain
Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 3, pp. 349-356

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a singularly perturbed elliptic problem, of convection-diffusion type, posed on a circular domain. Using polar coordinates, simple upwinding and a piecewise-uniform Shishkin mesh in the radial direction, we construct a numerical method that is monotone, pointwise accurate and parameter-uniform under certain compatibility constraints. Numerical results are presented to illustrate the performance of the numerical method when these constraints are not imposed on the data.
Keywords: parameter-uniform, Shishkin mesh.
Mots-clés : circular domain, convection-diffusion
@article{MAIS_2016_23_3_a11,
     author = {A. F. Hegarty and E. O' Riordan},
     title = {Numerical solution of a singularly perturbed problem on a circular domain},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {349--356},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a11/}
}
TY  - JOUR
AU  - A. F. Hegarty
AU  - E. O' Riordan
TI  - Numerical solution of a singularly perturbed problem on a circular domain
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2016
SP  - 349
EP  - 356
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a11/
LA  - en
ID  - MAIS_2016_23_3_a11
ER  - 
%0 Journal Article
%A A. F. Hegarty
%A E. O' Riordan
%T Numerical solution of a singularly perturbed problem on a circular domain
%J Modelirovanie i analiz informacionnyh sistem
%D 2016
%P 349-356
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a11/
%G en
%F MAIS_2016_23_3_a11
A. F. Hegarty; E. O' Riordan. Numerical solution of a singularly perturbed problem on a circular domain. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 3, pp. 349-356. http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a11/