Numerical solution of a singularly perturbed problem on a circular domain
Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 3, pp. 349-356.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a singularly perturbed elliptic problem, of convection-diffusion type, posed on a circular domain. Using polar coordinates, simple upwinding and a piecewise-uniform Shishkin mesh in the radial direction, we construct a numerical method that is monotone, pointwise accurate and parameter-uniform under certain compatibility constraints. Numerical results are presented to illustrate the performance of the numerical method when these constraints are not imposed on the data.
Keywords: parameter-uniform, Shishkin mesh.
Mots-clés : circular domain, convection-diffusion
@article{MAIS_2016_23_3_a11,
     author = {A. F. Hegarty and E. O' Riordan},
     title = {Numerical solution of a singularly perturbed problem on a circular domain},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {349--356},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a11/}
}
TY  - JOUR
AU  - A. F. Hegarty
AU  - E. O' Riordan
TI  - Numerical solution of a singularly perturbed problem on a circular domain
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2016
SP  - 349
EP  - 356
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a11/
LA  - en
ID  - MAIS_2016_23_3_a11
ER  - 
%0 Journal Article
%A A. F. Hegarty
%A E. O' Riordan
%T Numerical solution of a singularly perturbed problem on a circular domain
%J Modelirovanie i analiz informacionnyh sistem
%D 2016
%P 349-356
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a11/
%G en
%F MAIS_2016_23_3_a11
A. F. Hegarty; E. O' Riordan. Numerical solution of a singularly perturbed problem on a circular domain. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 3, pp. 349-356. http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a11/

[1] R. K. Dunne, E. O' Riordan, G. I. Shishkin, “Fitted mesh numerical methods for singularly perturbed elliptic problems with mixed derivatives”, IMA J. Num. Anal., 29 (2009), 712–730 | DOI | MR | Zbl

[2] P. A. Farrell, A. F. Hegarty, J. J. H. Miller, E. O' Riordan, G. I. Shishkin, Robust Computational Techniques for Boundary Layers, Chapman and Hall/CRC Press, Boca Raton, U.S.A., 2000 | MR | Zbl

[3] A. F. Hegarty, E. O'Riordan, Parameter-uniform numerical method for singularly perturbed convection-diffusion problem on a circular domain, submitted for publication

[4] Y. Hong, C.-Y. Jung, R. Temam, “On the numerical approximations of stiff convection-diffusion equations in a circle”, Numer. Math., 127:2 (2014), 291–313 | DOI | MR | Zbl

[5] C. -Y. Jung, R. Temam, “Convection-diffusion equations in a circle: The compatible case”, J. Math. Pures Appl., 96 (2011), 88–107 | DOI | MR | Zbl

[6] C. -Y. Jung, R. Temam, “Singular perturbations and boundary layer theory for convection-diffusion equations in a circle: the generic noncompatible case”, SIAM J. Math. Anal., 44:6 (2012), 4274–4296 | DOI | MR | Zbl

[7] C. -Y. Jung, R. Temam, “Boundary layer theory convection-diffusion equations in a circle”, Russ. Math. Surveys, 69:3 (2014), 435–480 | DOI | MR | Zbl

[8] E. O'Riordan, G. I. Shishkin, “A technique to prove parameter–uniform convergence for a singularly perturbed convection–diffusion equation”, J. Comp. Appl. Math., 206 (2007), 136–145 | DOI | MR | Zbl

[9] G. I. Shishkin, Discrete approximation of singularly perturbed elliptic and parabolic equations, Russian Academy of Sciences, Ural section, Ekaterinburg, 1992