Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2016_23_3_a11, author = {A. F. Hegarty and E. O' Riordan}, title = {Numerical solution of a singularly perturbed problem on a circular domain}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {349--356}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a11/} }
TY - JOUR AU - A. F. Hegarty AU - E. O' Riordan TI - Numerical solution of a singularly perturbed problem on a circular domain JO - Modelirovanie i analiz informacionnyh sistem PY - 2016 SP - 349 EP - 356 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a11/ LA - en ID - MAIS_2016_23_3_a11 ER -
%0 Journal Article %A A. F. Hegarty %A E. O' Riordan %T Numerical solution of a singularly perturbed problem on a circular domain %J Modelirovanie i analiz informacionnyh sistem %D 2016 %P 349-356 %V 23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a11/ %G en %F MAIS_2016_23_3_a11
A. F. Hegarty; E. O' Riordan. Numerical solution of a singularly perturbed problem on a circular domain. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 3, pp. 349-356. http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a11/
[1] R. K. Dunne, E. O' Riordan, G. I. Shishkin, “Fitted mesh numerical methods for singularly perturbed elliptic problems with mixed derivatives”, IMA J. Num. Anal., 29 (2009), 712–730 | DOI | MR | Zbl
[2] P. A. Farrell, A. F. Hegarty, J. J. H. Miller, E. O' Riordan, G. I. Shishkin, Robust Computational Techniques for Boundary Layers, Chapman and Hall/CRC Press, Boca Raton, U.S.A., 2000 | MR | Zbl
[3] A. F. Hegarty, E. O'Riordan, Parameter-uniform numerical method for singularly perturbed convection-diffusion problem on a circular domain, submitted for publication
[4] Y. Hong, C.-Y. Jung, R. Temam, “On the numerical approximations of stiff convection-diffusion equations in a circle”, Numer. Math., 127:2 (2014), 291–313 | DOI | MR | Zbl
[5] C. -Y. Jung, R. Temam, “Convection-diffusion equations in a circle: The compatible case”, J. Math. Pures Appl., 96 (2011), 88–107 | DOI | MR | Zbl
[6] C. -Y. Jung, R. Temam, “Singular perturbations and boundary layer theory for convection-diffusion equations in a circle: the generic noncompatible case”, SIAM J. Math. Anal., 44:6 (2012), 4274–4296 | DOI | MR | Zbl
[7] C. -Y. Jung, R. Temam, “Boundary layer theory convection-diffusion equations in a circle”, Russ. Math. Surveys, 69:3 (2014), 435–480 | DOI | MR | Zbl
[8] E. O'Riordan, G. I. Shishkin, “A technique to prove parameter–uniform convergence for a singularly perturbed convection–diffusion equation”, J. Comp. Appl. Math., 206 (2007), 136–145 | DOI | MR | Zbl
[9] G. I. Shishkin, Discrete approximation of singularly perturbed elliptic and parabolic equations, Russian Academy of Sciences, Ural section, Ekaterinburg, 1992