Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2016_23_3_a10, author = {N. N. Nefedov and E. I. Nikulin}, title = {Existence and stability of periodic solutions for reaction-diffusion equations in the two-dimensional case}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {342--348}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a10/} }
TY - JOUR AU - N. N. Nefedov AU - E. I. Nikulin TI - Existence and stability of periodic solutions for reaction-diffusion equations in the two-dimensional case JO - Modelirovanie i analiz informacionnyh sistem PY - 2016 SP - 342 EP - 348 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a10/ LA - en ID - MAIS_2016_23_3_a10 ER -
%0 Journal Article %A N. N. Nefedov %A E. I. Nikulin %T Existence and stability of periodic solutions for reaction-diffusion equations in the two-dimensional case %J Modelirovanie i analiz informacionnyh sistem %D 2016 %P 342-348 %V 23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a10/ %G en %F MAIS_2016_23_3_a10
N. N. Nefedov; E. I. Nikulin. Existence and stability of periodic solutions for reaction-diffusion equations in the two-dimensional case. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 3, pp. 342-348. http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a10/
[1] N. N. Nefedov, L. Recke, K. R. Schnieder, “Existence and asymptotic stability of periodic solutions with an interior layer of reaction-advection-diffusion equations.”, Journal of Mathematical Analysis and Applications, 405 (2013), 90–103 | DOI | MR | Zbl
[2] N. N. Nefedov, M. A. Davydova, “Contrast structures in singularly perturbed quasilinear reaction-diffusion-advection equations.”, Differentsial'nye Uravneniya, 49 (2013), 715–733 | MR | Zbl
[3] N.N. Nefedov, L. Recke, K.R. Schneider, “Asymptotic stability via the Krein-Rutman theorem for singularly perturbed parabolic periodic-Dirichlet problems”, Regular and Chaotic Dynamics, 15 (2010), 382–389 | DOI | MR | Zbl
[4] N.N. Nefedov, “The method of differential inequalities for some classes of nonlinear singularly perturbed problems with internal layers”, Differ. Uravn., 31 (1995), 1142–1149 | MR | Zbl
[5] V.T. Volkov, N. N. Nefedov, “Development of the asymptotic method of differential inequalities for investigation of periodic contrast structures in reacton-diffusion-advection equations”, Differ. Uravn., 46 (2006), 585–593 | MR | Zbl
[6] A. B. Vasil'eva, V. F. Butuzov, Asymptotic Expansions of the Solutions of Singularly Perturbed Equations, Nauka, M., 1973 (in Russian) | MR
[7] P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Research Notes in Math. Series, 247, Longman Scientific, 1991 | MR | Zbl
[8] D. H. Sattinger, “Monotone methods in nonlinear elliptic and parabolic boundary value problems”, Indiana Math. J., 21:11 (1972), 979–1001 | DOI | MR
[9] P. Fife, M. Tang, “Comparison principles for reaction-diffusion systems: Irregular comparison functions and applications to question of stability and speed propagation of front”, J. Diff. Equations, 40 (1981), 168–175 | DOI | MR
[10] V.T. Volkov, N. N. Nefedov, “O periodicheskikh resheniyakh s pogranichnymi sloyami odnoy singulyarno vozmushchennoy modeli reaktsiya-diffuziya”, Computational Mathematics and Mathematical Physics, 34 (1994), 1307–1315 | MR | Zbl
[11] N. N. Nefedov, “Development of the Asymptotic Method of Differential Inequalities for Investigation of Periodic Contrast Structures in Reaction-Diffusion Equations”, Computational Mathematics and Mathematical Physics, 46 (2006), 614–622 | MR
[12] N. N. Nefedov, “Comparison Principle for Reaction-Diffusion-Advection Problems with Boundary and Internal Layers”, Lecture Notes in Computer Science, 8236, 2013, 62–72 | DOI | MR | Zbl
[13] N. N. Nefedov, O. E. Omel'chenko, “Periodic Step-Like Contrast Structures for a Singularly Perturbed Parabolic Equation”, Differ. Uravn., 36 (2000), 209–218 | MR
[14] N. N. Nefedov, “An Asymptotic Method of Differential Inequalities for the Investigation of Periodic Contrast Structures: Existence, Asymptotics, and Stability”, Differ. Uravn., 36 (2000), 262–269 | MR | Zbl
[15] A. B. Vasil'eva, V. F. Butuzov, N. N. Nefedov, “Kontrastnye struktury v singulyarno vozmushchennykh zadachakh”, Fundamental'naya i prikladnaya matematika, 4 (1998), 799–851 | MR | Zbl
[16] C. V. Pao, Nonlinear parabolic and elliptic equations, Plenum Press, New York–London, 1992 | MR | Zbl
[17] Amman H., Periodic solutions of semilinear parabolic equations in nonlinear analysis, Acad. Press, New York, 1978 | MR