Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2016_23_3_a0, author = {S. Becher}, title = {FEM-analysis on layer-adapted meshes for turning point problems exhibiting an interior layer}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {240--247}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a0/} }
TY - JOUR AU - S. Becher TI - FEM-analysis on layer-adapted meshes for turning point problems exhibiting an interior layer JO - Modelirovanie i analiz informacionnyh sistem PY - 2016 SP - 240 EP - 247 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a0/ LA - en ID - MAIS_2016_23_3_a0 ER -
S. Becher. FEM-analysis on layer-adapted meshes for turning point problems exhibiting an interior layer. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 3, pp. 240-247. http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a0/
[1] Becher S., Analysis of Galerkin and SDFEM on piecewise equidistant meshes for turning point problems exhibiting an interior layer, 2016, arXiv: 1604.01327v1 [math.NA]
[2] Becher S., FEM-analysis on graded meshes for turning point problems exhibiting an interior layer, 2016, arXiv: 1603.04653v1 [math.NA]
[3] Berger A. E., Han H., Kellogg R. B., “A Priori Estimates and Analysis of a Numerical Method for a Turning Point Problem”, Math. Comp., 42:166 (1984), 465–492 | DOI | MR | Zbl
[4] Liseikin V. D., Layer resolving grids and transformations for singular perturbation problems, VSP, Utrecht, 2001
[5] Ludwig L., $\mathbb{SOFE}$, http://www.math.tu-dresden.de/l̃udwigl/
[6] Sun G., Stynes M., “Finite element methods on piecewise equidistant meshes for interior turning point problems”, Numer. Algorithms, 8:1 (1994), 111–129 | DOI | MR | Zbl