FEM-analysis on layer-adapted meshes for turning point problems exhibiting an interior layer
Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 3, pp. 240-247.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider singularly perturbed turning point problems whose solutions exhibit an interior layer. Two suitable layer-adapted mesh-types are presented. For both types we give uniform error estimates in the $\varepsilon$-weighted energy norm for finite elements of higher order. Numerical experiments are used to compare the meshes and to confirm the theoretical findings.
Keywords: turning point, interior layer, layer-adapted meshes, higher order finite elements.
Mots-clés : singular perturbation
@article{MAIS_2016_23_3_a0,
     author = {S. Becher},
     title = {FEM-analysis on layer-adapted meshes for turning point problems exhibiting an interior layer},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {240--247},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a0/}
}
TY  - JOUR
AU  - S. Becher
TI  - FEM-analysis on layer-adapted meshes for turning point problems exhibiting an interior layer
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2016
SP  - 240
EP  - 247
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a0/
LA  - en
ID  - MAIS_2016_23_3_a0
ER  - 
%0 Journal Article
%A S. Becher
%T FEM-analysis on layer-adapted meshes for turning point problems exhibiting an interior layer
%J Modelirovanie i analiz informacionnyh sistem
%D 2016
%P 240-247
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a0/
%G en
%F MAIS_2016_23_3_a0
S. Becher. FEM-analysis on layer-adapted meshes for turning point problems exhibiting an interior layer. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 3, pp. 240-247. http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a0/

[1] Becher S., Analysis of Galerkin and SDFEM on piecewise equidistant meshes for turning point problems exhibiting an interior layer, 2016, arXiv: 1604.01327v1 [math.NA]

[2] Becher S., FEM-analysis on graded meshes for turning point problems exhibiting an interior layer, 2016, arXiv: 1603.04653v1 [math.NA]

[3] Berger A. E., Han H., Kellogg R. B., “A Priori Estimates and Analysis of a Numerical Method for a Turning Point Problem”, Math. Comp., 42:166 (1984), 465–492 | DOI | MR | Zbl

[4] Liseikin V. D., Layer resolving grids and transformations for singular perturbation problems, VSP, Utrecht, 2001

[5] Ludwig L., $\mathbb{SOFE}$, http://www.math.tu-dresden.de/l̃udwigl/

[6] Sun G., Stynes M., “Finite element methods on piecewise equidistant meshes for interior turning point problems”, Numer. Algorithms, 8:1 (1994), 111–129 | DOI | MR | Zbl