Asymptotic formula for the moments of Bernoulli convolutions
Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 2, pp. 185-194.

Voir la notice de l'article provenant de la source Math-Net.Ru

For each $\lambda$, $0\lambda1$, we define a random variable $$ Y_\lambda = (1-\lambda)\sum_{n=0}^\infty \xi_n\lambda^n, $$ where $\xi_n$ are independent random variables with $$ \mathrm{P}\{\xi_n =0\} =\mathrm{P}\{\xi_n =1\} =\frac12. $$ The distribution of $Y_\lambda$ is called a symmetric Bernoulli convolution. The main result of this paper is $$ M_n = \mathrm{E} Y_\lambda^n = n^{\log_{\lambda}2} 2^{\log_\lambda(1-\lambda)+0.5\log_\lambda2-0.5} e^{\tau(-\log_{\lambda}n)}\left(1 + \mathcal{O}(n^{-0.99})\right), $$ where $$ \tau(x)=\sum_{k\ne0}\frac1k\alpha\left(-\frac{k}{\ln\lambda}\right)e^{2\pi ikx} $$ is a 1-periodic function, $$ \alpha(t) = -\frac{1}{2i\mathrm{sh}\,(\pi^2t)} (1-\lambda)^{2\pi i t}(1 - 2^{2\pi i t})\pi^{-2\pi i t }2^{-2\pi i t }\zeta(2\pi i t), $$ and $\zeta(z)$ is the Riemann zeta function. The article is published in the author's wording.
Keywords: self-similar, singular, Mellin transform, asymptotic.
Mots-clés : moments, Bernoulli convolution
@article{MAIS_2016_23_2_a6,
     author = {E. A. Timofeev},
     title = {Asymptotic formula for the moments of {Bernoulli} convolutions},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {185--194},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_2_a6/}
}
TY  - JOUR
AU  - E. A. Timofeev
TI  - Asymptotic formula for the moments of Bernoulli convolutions
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2016
SP  - 185
EP  - 194
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2016_23_2_a6/
LA  - en
ID  - MAIS_2016_23_2_a6
ER  - 
%0 Journal Article
%A E. A. Timofeev
%T Asymptotic formula for the moments of Bernoulli convolutions
%J Modelirovanie i analiz informacionnyh sistem
%D 2016
%P 185-194
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2016_23_2_a6/
%G en
%F MAIS_2016_23_2_a6
E. A. Timofeev. Asymptotic formula for the moments of Bernoulli convolutions. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 2, pp. 185-194. http://geodesic.mathdoc.fr/item/MAIS_2016_23_2_a6/

[1] Bari N. K., Trigonometric Series, Holt, Rinehart and Winston, New York, 1967

[2] Flajolet P., Sedgewick R., Analytic Combinatorics, Cambridge University Press, 2008 | MR

[3] Flajolet P., Gourdon X., Dumas P., “Mellin transforms and asymptotics: Harmonic sums”, Theoretical Computer Science, 144:1–2 (1995), 3–58 | DOI | MR | Zbl

[4] Erdös P., “On a Family of Symmetric Bernoulli Convolutions”, American Journal of Mathematics, 61:4 (1995), 974–976 | DOI | MR

[5] Erdös P., “On the Smoothness Properties of a Family of Bernoulli Convolutions”, American Journal of Mathematics, 62:1 (1940), 180–186 | DOI | MR

[6] Garsia A. M., “Arithmetic Properties of Bernoulli Convolutions”, Transactions of the American Mathematical Society, 102:3 (1962), 409–432 | DOI | MR | Zbl

[7] Jessen B., Wintner A., “Distribution Functions and the Riemann Zeta Function”, Transactions of the American Mathematical Society, 38:1 (1935), 48–88 | DOI | MR

[8] Peres Y., Schlag W., and Solomyak B., “Sixty years of Bernoulli convolutions”, Fractals and Stochastics II, eds. C. Bandt, S. Graf, M. Zaehle, Birkhauser, 2000, 39–65 | DOI | MR | Zbl

[9] Salem R., “Sets of Uniqueness and Sets of Multiplicity”, Transactions of the American Mathematical Society, 54:2 (1943), 218–228 | DOI | MR

[10] Salem R., “Sets of Uniqueness and Sets of Multiplicity, II”, Transactions of the American Mathematical Society, 56:1 (1944), 32–49 | DOI | MR

[11] Salem R., “Rectifications to the Papers Sets of Uniqueness and Sets of Multiplicity. I; II”, Transactions of the American Mathematical Society, 63:3 (1948), 595–598 | MR

[12] Solomyak B., “On the Random Series $\sum \pm \lambda^n$ (an Erdos Problem)”, The Annals of Mathematics (2), 142:3 (1995), 611–625 | DOI | MR | Zbl

[13] Wintner A., “On Convergent Poisson Convolutions”, American Journal of Mathematics, 57:4 (1935), 827–838 | DOI | MR

[14] Szpankowski W., Average Case Analysis of Algorithms on Sequences, John Wiley Sons, New York, 2001 | MR

[15] Gradstein I. S., Ryzhik I. M., Table of integrals, Series, and Products, Academic Press, 1994