Asymptotic formula for the moments of Bernoulli convolutions
Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 2, pp. 185-194

Voir la notice de l'article provenant de la source Math-Net.Ru

For each $\lambda$, $0\lambda1$, we define a random variable $$ Y_\lambda = (1-\lambda)\sum_{n=0}^\infty \xi_n\lambda^n, $$ where $\xi_n$ are independent random variables with $$ \mathrm{P}\{\xi_n =0\} =\mathrm{P}\{\xi_n =1\} =\frac12. $$ The distribution of $Y_\lambda$ is called a symmetric Bernoulli convolution. The main result of this paper is $$ M_n = \mathrm{E} Y_\lambda^n = n^{\log_{\lambda}2} 2^{\log_\lambda(1-\lambda)+0.5\log_\lambda2-0.5} e^{\tau(-\log_{\lambda}n)}\left(1 + \mathcal{O}(n^{-0.99})\right), $$ where $$ \tau(x)=\sum_{k\ne0}\frac1k\alpha\left(-\frac{k}{\ln\lambda}\right)e^{2\pi ikx} $$ is a 1-periodic function, $$ \alpha(t) = -\frac{1}{2i\mathrm{sh}\,(\pi^2t)} (1-\lambda)^{2\pi i t}(1 - 2^{2\pi i t})\pi^{-2\pi i t }2^{-2\pi i t }\zeta(2\pi i t), $$ and $\zeta(z)$ is the Riemann zeta function. The article is published in the author's wording.
Keywords: self-similar, singular, Mellin transform, asymptotic.
Mots-clés : moments, Bernoulli convolution
@article{MAIS_2016_23_2_a6,
     author = {E. A. Timofeev},
     title = {Asymptotic formula for the moments of {Bernoulli} convolutions},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {185--194},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_2_a6/}
}
TY  - JOUR
AU  - E. A. Timofeev
TI  - Asymptotic formula for the moments of Bernoulli convolutions
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2016
SP  - 185
EP  - 194
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2016_23_2_a6/
LA  - en
ID  - MAIS_2016_23_2_a6
ER  - 
%0 Journal Article
%A E. A. Timofeev
%T Asymptotic formula for the moments of Bernoulli convolutions
%J Modelirovanie i analiz informacionnyh sistem
%D 2016
%P 185-194
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2016_23_2_a6/
%G en
%F MAIS_2016_23_2_a6
E. A. Timofeev. Asymptotic formula for the moments of Bernoulli convolutions. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 2, pp. 185-194. http://geodesic.mathdoc.fr/item/MAIS_2016_23_2_a6/