Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2016_23_2_a4, author = {T. V. Prokhorova}, title = {On the {Brauer} group of an arithmetic model of a variety over a global field of positive characteristic}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {164--172}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_2_a4/} }
TY - JOUR AU - T. V. Prokhorova TI - On the Brauer group of an arithmetic model of a variety over a global field of positive characteristic JO - Modelirovanie i analiz informacionnyh sistem PY - 2016 SP - 164 EP - 172 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2016_23_2_a4/ LA - ru ID - MAIS_2016_23_2_a4 ER -
%0 Journal Article %A T. V. Prokhorova %T On the Brauer group of an arithmetic model of a variety over a global field of positive characteristic %J Modelirovanie i analiz informacionnyh sistem %D 2016 %P 164-172 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2016_23_2_a4/ %G ru %F MAIS_2016_23_2_a4
T. V. Prokhorova. On the Brauer group of an arithmetic model of a variety over a global field of positive characteristic. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 2, pp. 164-172. http://geodesic.mathdoc.fr/item/MAIS_2016_23_2_a4/
[1] Skorobogatov A. N., Zarhin Yu. G., A finiteness theorem for the Brauer group of K3 surfaces in odd characteristic, 4 Mar 2014, 10 pp., arXiv: 1403.0849v1 [math.AG] | MR
[2] Tankeev S. G., “On the finiteness of the Brauer group of an arithmetic scheme”, Math. Notes, 95:1 (2014), 136–149 (in Russian) | DOI | MR | Zbl
[3] Colliot-Thélène J.-L., Skorobogatov A. N., Swinnerton-Dyer P., “Hasse principle for pencils of curves of genus one whose Jacobians have rational 2-division points”, Invent. Math., 134:3 (1998), 579–650 | DOI | MR | Zbl
[4] Milne J. S., Etale cohomology, Princeton Univ. Press, Princeton, 1980 | MR | MR | Zbl
[5] Godement R., Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1958 | MR
[6] Lang S., Weil A., “Number of points of varieties in finite fields”, Amer. J. Math., 76:4 (1954), 819–827 | DOI | MR | Zbl
[7] Tankeev S. G., “On the Brauer group of arithmetic scheme. II”, Izv. Math., 67:5 (2003), 1007–1029 | DOI | DOI | MR | Zbl
[8] Atiyah M. F., Macdonald I. G., Introduction to commutative algebra, Addison-Wesley Publ. Co., Massachusets, 1969 | MR | MR | Zbl
[9] Skorobogatov A. N., “Descent on fibrations over the projective line”, Amer. J. Math., 118:5 (1996), 905–923 | DOI | MR | Zbl
[10] Bourbaki N., Éléments de Mathématique. Algébre, v. II, Hermann, Paris, 1963 | MR
[11] Cassels G. W. S., Frölich A. (eds.), Algebraic number theory (Brighton, 1965), Academic Press, London; Thompson, Washington, DC, 1967 | MR | MR | Zbl