On the Brauer group of an arithmetic model of a variety over a global field of positive characteristic
Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 2, pp. 164-172.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $V$ be a smooth projective variety over a global field $k=\kappa(C)$ of rational functions on a smooth projective curve $C$ over a finite field $\Bbb F_q$ of characteristic $p$. Assume that there is a projective flat $\Bbb F_q$-morphism $\pi:X\to C$, where $X$ is a smooth projective variety and the generic scheme fiber of $\pi$ is isomorphic to a variety $V$ (we call $\pi:X\to C$ an arithmetic model of a variety $V$). M. Artin conjectured the finiteness of the Brauer group $\operatorname{Br}(X)$ classifying sheaves of Azumaya algebras on $X$ modulo similitude. It is well known that the group $\operatorname{Br}(X)$ is contained in the cohomological Brauer group $$\operatorname{Br}'(X)=H^2_{et}(X, {\Bbb G}_m).$$ By definition, the $\operatorname{non}-p$ component of the cohomological Brauer group $\operatorname{Br}'(X)$ coincides with the direct sum of the $l$-primary components of the group $\operatorname{Br}'(X)$ for all prime numbers $l$ different from the characteristic $p$. It is known that the structure of $k$-variety on $V$ yields the canonical morphism of the groups $\operatorname{Br}(k)\to \operatorname{Br}'(V)$. The finiteness of the $\operatorname{non}-p$ component of the cohomological Brauer group $\operatorname{Br}'(X)$ of a variety $X$ has been proved if $$[\operatorname{Br}'(V)/\operatorname{Im}[\operatorname{Br}(k)\to\operatorname{Br}'(V)]](\operatorname{non}-p)$$ is finite. In particular, if $V$ is a $\operatorname{K}3$ surface (in other words, $V$ is a smooth projective simply connected surface over a field $k$ and the canonical class of a surface of $V$ is trivial: $\Omega^2_V=\mathcal O_V$) and the characteristic of the ground field $p > 2$, then, by the Skorobogatov–Zarhin theorem, $[\operatorname{Br}'(V)/\operatorname{Im}[\operatorname{Br}(k)\to\operatorname{Br}'(V)]](\operatorname{non}-p)$ is finite, so in this case the groups $\operatorname{Br}'(X)(\operatorname{non}-p)$ and $\operatorname{Br}(X)(\operatorname{non}-p)$ are finite.
Keywords: Brauer group, arithmetic model, $\operatorname{K}3$ surface.
@article{MAIS_2016_23_2_a4,
     author = {T. V. Prokhorova},
     title = {On the {Brauer} group of an arithmetic model of a variety over a global field of positive characteristic},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {164--172},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_2_a4/}
}
TY  - JOUR
AU  - T. V. Prokhorova
TI  - On the Brauer group of an arithmetic model of a variety over a global field of positive characteristic
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2016
SP  - 164
EP  - 172
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2016_23_2_a4/
LA  - ru
ID  - MAIS_2016_23_2_a4
ER  - 
%0 Journal Article
%A T. V. Prokhorova
%T On the Brauer group of an arithmetic model of a variety over a global field of positive characteristic
%J Modelirovanie i analiz informacionnyh sistem
%D 2016
%P 164-172
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2016_23_2_a4/
%G ru
%F MAIS_2016_23_2_a4
T. V. Prokhorova. On the Brauer group of an arithmetic model of a variety over a global field of positive characteristic. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 2, pp. 164-172. http://geodesic.mathdoc.fr/item/MAIS_2016_23_2_a4/

[1] Skorobogatov A. N., Zarhin Yu. G., A finiteness theorem for the Brauer group of K3 surfaces in odd characteristic, 4 Mar 2014, 10 pp., arXiv: 1403.0849v1 [math.AG] | MR

[2] Tankeev S. G., “On the finiteness of the Brauer group of an arithmetic scheme”, Math. Notes, 95:1 (2014), 136–149 (in Russian) | DOI | MR | Zbl

[3] Colliot-Thélène J.-L., Skorobogatov A. N., Swinnerton-Dyer P., “Hasse principle for pencils of curves of genus one whose Jacobians have rational 2-division points”, Invent. Math., 134:3 (1998), 579–650 | DOI | MR | Zbl

[4] Milne J. S., Etale cohomology, Princeton Univ. Press, Princeton, 1980 | MR | MR | Zbl

[5] Godement R., Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1958 | MR

[6] Lang S., Weil A., “Number of points of varieties in finite fields”, Amer. J. Math., 76:4 (1954), 819–827 | DOI | MR | Zbl

[7] Tankeev S. G., “On the Brauer group of arithmetic scheme. II”, Izv. Math., 67:5 (2003), 1007–1029 | DOI | DOI | MR | Zbl

[8] Atiyah M. F., Macdonald I. G., Introduction to commutative algebra, Addison-Wesley Publ. Co., Massachusets, 1969 | MR | MR | Zbl

[9] Skorobogatov A. N., “Descent on fibrations over the projective line”, Amer. J. Math., 118:5 (1996), 905–923 | DOI | MR | Zbl

[10] Bourbaki N., Éléments de Mathématique. Algébre, v. II, Hermann, Paris, 1963 | MR

[11] Cassels G. W. S., Frölich A. (eds.), Algebraic number theory (Brighton, 1965), Academic Press, London; Thompson, Washington, DC, 1967 | MR | MR | Zbl