Asymptotic formula for the moments of Takagi function
Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 1, pp. 5-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

Takagi function is a simple example of a continuous but nowhere differentiable function. It is defined by $$ T(x) = \sum_{k=0}^{\infty}2^{-n}\rho(2^nx), $$ where $$ \rho(x) = \min_{k\in \mathbb{Z}}|x-k|. $$ The moments of Takagi function are defined as $$ M_n = \int_0^1\,x^n T(x)\,dx. $$ The main result of this paper is the following: $$ M_n = \frac{\ln n - \Gamma'(1)-\ln\pi}{n^2\ln 2}+\frac{1}{2n^2} +\frac{2}{n^2\ln 2} \phi(n) + \mathcal{O}(n^{-2.99}), $$ where $$ \phi(x) = \sum_{k\ne 0} \Gamma\left(\frac{2\pi i k}{\ln 2}\right)\zeta\left(\frac{2\pi i k}{\ln 2}\right)x^{-\frac{2\pi i k}{\ln 2}}. $$
Mots-clés : moments
Keywords: self-similar, Takagi function, singular, Mellin transform, asymptotic.
@article{MAIS_2016_23_1_a0,
     author = {E. A. Timofeev},
     title = {Asymptotic formula for the moments of {Takagi} function},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {5--11},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_1_a0/}
}
TY  - JOUR
AU  - E. A. Timofeev
TI  - Asymptotic formula for the moments of Takagi function
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2016
SP  - 5
EP  - 11
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2016_23_1_a0/
LA  - ru
ID  - MAIS_2016_23_1_a0
ER  - 
%0 Journal Article
%A E. A. Timofeev
%T Asymptotic formula for the moments of Takagi function
%J Modelirovanie i analiz informacionnyh sistem
%D 2016
%P 5-11
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2016_23_1_a0/
%G ru
%F MAIS_2016_23_1_a0
E. A. Timofeev. Asymptotic formula for the moments of Takagi function. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 1, pp. 5-11. http://geodesic.mathdoc.fr/item/MAIS_2016_23_1_a0/

[1] Flajolet P., Sedgewick R., Analytic Combinatorics, Cambridge University Press, 2008 | MR

[2] Flajolet P., Gourdon X., Dumas P., “Mellin transforms and asymptotics: Harmonic sums”, Theoretical Computer Science, 144:1–2 (1995), 3–58 | DOI | MR | Zbl

[3] Lagarias J. C., “The Takagi function and its properties”, RIMS Kôkyûroku Bessatsu, B34 (2012), 153–189 | MR | Zbl

[4] Allaart P. C., Kawamura K., “The Takagi Function: a Survey”, Real Anal. Exchange, 37:1 (2011), 1–54 | MR

[5] De Rham G., “On Some Curves Defined by Functional Equations”, Classics on Fractals, ed. Edgar G. A., Addison-Wesley, 1993, 285–298

[6] Kairies H.-H., Darsow W. F., Frank M. J., “Functional equations for a function of van der Waerden type”, Rad. Mat., 4:2 (1988), 361–374 | MR | Zbl

[7] Oberhettinger F., Tables of Mellin Transforms, Springer-Verlag, New York, 1974 | MR | Zbl

[8] Szpankowski W., Average Case Analysis of Algorithms on Sequences, John Wiley Sons, New York, 2001 | MR

[9] Gradstein I. S., Ryzhik I. M., Table of integrals, Series, and Products, Academic Press, 1994