Asymptotic formula for the moments of Takagi function
Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 1, pp. 5-11

Voir la notice de l'article provenant de la source Math-Net.Ru

Takagi function is a simple example of a continuous but nowhere differentiable function. It is defined by $$ T(x) = \sum_{k=0}^{\infty}2^{-n}\rho(2^nx), $$ where $$ \rho(x) = \min_{k\in \mathbb{Z}}|x-k|. $$ The moments of Takagi function are defined as $$ M_n = \int_0^1\,x^n T(x)\,dx. $$ The main result of this paper is the following: $$ M_n = \frac{\ln n - \Gamma'(1)-\ln\pi}{n^2\ln 2}+\frac{1}{2n^2} +\frac{2}{n^2\ln 2} \phi(n) + \mathcal{O}(n^{-2.99}), $$ where $$ \phi(x) = \sum_{k\ne 0} \Gamma\left(\frac{2\pi i k}{\ln 2}\right)\zeta\left(\frac{2\pi i k}{\ln 2}\right)x^{-\frac{2\pi i k}{\ln 2}}. $$
Mots-clés : moments
Keywords: self-similar, Takagi function, singular, Mellin transform, asymptotic.
@article{MAIS_2016_23_1_a0,
     author = {E. A. Timofeev},
     title = {Asymptotic formula for the moments of {Takagi} function},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {5--11},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_1_a0/}
}
TY  - JOUR
AU  - E. A. Timofeev
TI  - Asymptotic formula for the moments of Takagi function
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2016
SP  - 5
EP  - 11
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2016_23_1_a0/
LA  - ru
ID  - MAIS_2016_23_1_a0
ER  - 
%0 Journal Article
%A E. A. Timofeev
%T Asymptotic formula for the moments of Takagi function
%J Modelirovanie i analiz informacionnyh sistem
%D 2016
%P 5-11
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2016_23_1_a0/
%G ru
%F MAIS_2016_23_1_a0
E. A. Timofeev. Asymptotic formula for the moments of Takagi function. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 1, pp. 5-11. http://geodesic.mathdoc.fr/item/MAIS_2016_23_1_a0/