Asymptotic formula for the moments of Lebesgue’s singular function
Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 5, pp. 723-730.

Voir la notice de l'article provenant de la source Math-Net.Ru

Recall Lebesgue's singular function. Imagine flipping a biased coin with probability $p$ of heads and probability $q=1-p$ of tails. Let the binary expansion of $\xi\in[0,1]$: $ \xi = \sum_{k=1}^{\infty}c_k2^{-k}$ be determined by flipping the coin infinitely many times, that is, $c_k =1$ if the $k$-th toss is heads and $c_k =0$ if it is tails. We define Lebesgue's singular function $L(t)$ as the distribution function of the random variable $\xi$: $$ L(t) = Prob\{\xi t\}. $$ It is well-known that $L(t)$ is strictly increasing and its derivative is zero almost everywhere ($p\ne q$). The moments of Lebesque' singular function are defined as $$ M_n = \mathsf{E}\xi^n. $$ The main result of this paper is the following: $$ M_n = O(n^{\log_2 p}). $$
Mots-clés : moments, Lebesgue’s function
Keywords: self-similar, singular, Mellin transform, asymptotic.
@article{MAIS_2015_22_5_a7,
     author = {E. A. Timofeev},
     title = {Asymptotic formula for the moments of {Lebesgue{\textquoteright}s} singular function},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {723--730},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2015_22_5_a7/}
}
TY  - JOUR
AU  - E. A. Timofeev
TI  - Asymptotic formula for the moments of Lebesgue’s singular function
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2015
SP  - 723
EP  - 730
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2015_22_5_a7/
LA  - ru
ID  - MAIS_2015_22_5_a7
ER  - 
%0 Journal Article
%A E. A. Timofeev
%T Asymptotic formula for the moments of Lebesgue’s singular function
%J Modelirovanie i analiz informacionnyh sistem
%D 2015
%P 723-730
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2015_22_5_a7/
%G ru
%F MAIS_2015_22_5_a7
E. A. Timofeev. Asymptotic formula for the moments of Lebesgue’s singular function. Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 5, pp. 723-730. http://geodesic.mathdoc.fr/item/MAIS_2015_22_5_a7/

[1] Flajolet P., Sedgewick R., Analytic Combinatorics, Cambridge University Press, 2008 | MR

[2] Lomnicki Z., Ulam S. E., “Sur la theorie de la mesure dans les espaces combinatoires et son application au calcul des probabilites. I: Variables independantes”, Fundamenta Mathematicae, 23:1 (1934), 237–278

[3] Salem R., “On some singular monotonic functions which are strictly increasing”, Trans. Amer. Math. Soc., 53:3 (1943), 427–439 | DOI | MR | Zbl

[4] De Rham G., “On Some Curves Defined by Functional Equations”, Classics on Fractals, ed. Gerald A. Edgar, Addison-Wesley, 1993, 285–298

[5] Szpankowski W.,, Average Case Analysis of Algorithms on Sequences, John Wiley Sons, New York, 2001 | MR

[6] Gradstein I. S., Ryzhik I. M., Table of integrals, Series, and Products, Academic Press, 1994

[7] Timofeev E. A., “Bias of a nonparametric entropy estimator for Markov measures”, Journal of Mathematical Sciences, 176:2 (2011), 255–269 | DOI | MR | Zbl