Local bifurcations analysis of a state-dependent delay differential equation
Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 5, pp. 711-722.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a first-order equation with state-dependent delay and with a nonlinear right-hand side is considered. Conditions of existence and uniqueness of the solution of initial value problem are supposed to be executed. The task is to study the behavior of solutions of the considered equation in a small neighborhood of its zero equilibrium. Local dynamics depends on real parameters which are coefficients of equation right-hand side decomposition in a Taylor series. The parameter which is a coefficient at the linear part of this decomposition has two critical values which determine a stability domain of zero equilibrium. We introduce a small positive parameter and use the asymtotic method of normal forms in order to investigate local dynamics modifications of the equation near each two critical values. We show that the stability exchange bifurcation occurs in the considered equation near the first of these critical values, and the supercritical Andronov–Hopf bifurcation occurs near the second of them (if the sufficient condition is executed). Asymptotic decompositions according to correspondent small parameters are obtained for each stable solution. Next, a logistic equation with state-dependent delay is considered as an example. The bifurcation parameter of this equation has one critical value. A simple sufficient condition of Andronov–Hopf bifurcation occurence in the considered equation near a critical value is obtained as a result of applying the method of normal forms.
Keywords: dynamical systems, equations with delay, state-dependent delay, local dynamics, stability, stability exchange bifurcation, logistic equation.
Mots-clés : Andronov–Hopf bifurcation
@article{MAIS_2015_22_5_a6,
     author = {V. O. Golubenets},
     title = {Local bifurcations analysis of a state-dependent delay differential equation},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {711--722},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2015_22_5_a6/}
}
TY  - JOUR
AU  - V. O. Golubenets
TI  - Local bifurcations analysis of a state-dependent delay differential equation
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2015
SP  - 711
EP  - 722
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2015_22_5_a6/
LA  - ru
ID  - MAIS_2015_22_5_a6
ER  - 
%0 Journal Article
%A V. O. Golubenets
%T Local bifurcations analysis of a state-dependent delay differential equation
%J Modelirovanie i analiz informacionnyh sistem
%D 2015
%P 711-722
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2015_22_5_a6/
%G ru
%F MAIS_2015_22_5_a6
V. O. Golubenets. Local bifurcations analysis of a state-dependent delay differential equation. Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 5, pp. 711-722. http://geodesic.mathdoc.fr/item/MAIS_2015_22_5_a6/

[1] Valentayn R. S., “Ekonomichnost, ustoychivost i rabotosposobnost ZhRD”, Voprosy raketnoy tekhniki, 1:217 (1973) (in Russian)

[2] Sabersky R. H., “Effect of wave propagation in feed lines on low frequency rocket instability”, Jet Propulsion, 24:172 (1964)

[3] Crocco L., Harrje D. T., Reardon F. H., “Transverse combustio instability in liquid propellant rocket motors”, ARS Journal, 32:3 (1962) | DOI

[4] Reardon F. H., Crocco L., Harrje D. T., “Velocity effects in transverse mode liquid propellant rocket combustion instability”, AIAA Journal, 2:9 (1964)

[5] Kolesov Yu. S., Shvitra D. I., “Matematicheskoe modelirovanie protsessa goreniya v kamere zhidkostnogo raketnogo dvigatelya”, Litovskiy matematicheskiy sbornik, 15:4 (1975) (in Russian) | MR

[6] Zager M. G., Schlosser P. M., Tran H. T., “A delayed nonlinear PBPK model for genistein dosimetry in rats”, Bulletin of Mathematical Biology, 69 (2007), 93–117 | DOI | MR | Zbl

[7] Hu Q., Wu J., “Global Hopf bifurcation for differential equations with state-dependent delay”, Journal of Differential Equations, 248:12 (2010), 2801–2840 | DOI | MR | Zbl

[8] Brokate M., Colonius F., “Linearizing equations with state-dependent delays”, Appl. Math. Optim., 21 (1990), 45–52 | DOI | MR | Zbl

[9] Cooke K. L., Huang W. Z., “On the problem of linearization for state-dependent delay differential equations”, Proc. Amer. Math. Soc., 124:5 (1996), 1417–1426 | DOI | MR | Zbl

[10] Hartung F., Turi J., “On differentiability of solutions with respect to parameters in state-dependent delay equations”, J. Differential Equations, 135 (1997), 192–237 | DOI | MR | Zbl

[11] Driver R. D., “Existence theory for a delay-differential system”, Contrib. Different. Equat., 1:3 (1963) | MR | Zbl

[12] Elsgolts L. E., Norkin S. B., Introduction to the Theory and Application of Differential Equations with Deviating Arguments, Academic Press, 1973 | MR | MR

[13] Halanay A., Yorke J., “Some new results and problems in the theory of differential-delay equations”, SIAM Rev., 13:1 (1971) | DOI | MR | Zbl

[14] Kashchenko I. S., Kashchenko S. A., “Local Dynamics of an Equation with a Large State Dependent Delay”, Doklady Mathematics, 92:2 (2015), 1–4 | DOI | DOI

[15] Kashchenko S. A., “Asymptotics of the Solutions of the Generalized Hutchinson Equation”, Automatic Control and Computer Sciences, 47:7 (2013), 470–494 | DOI

[16] Kashchenko D. S., Kashchenko I. S., Dinamika uravneniy pervogo poryadka s zapazdyvaniem, uchebnoe posobie, Yaroslavl, 2006 (in Russian)

[17] Bryuno A. D., Local Methods in Nonlinear Differential Equations, Springer, 1989 | MR | MR

[18] Marsden Dzh., Mak-Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980 | MR | Zbl

[19] Hartman P., Ordinary Differential Equations, Society for Industrial and Applied Mathematics, 2002 | MR

[20] Yang Kuang, Delay Differential Equations: With Applications in Population Dynamics, Academic Press, 1993 | MR | Zbl