Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2015_22_5_a4, author = {A. M. Kovaleva and D. A. Kulikov}, title = {Single-mode and dual-mode nongomogeneous dissipative structures in the nonlocal model of erosion}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {665--681}, publisher = {mathdoc}, volume = {22}, number = {5}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2015_22_5_a4/} }
TY - JOUR AU - A. M. Kovaleva AU - D. A. Kulikov TI - Single-mode and dual-mode nongomogeneous dissipative structures in the nonlocal model of erosion JO - Modelirovanie i analiz informacionnyh sistem PY - 2015 SP - 665 EP - 681 VL - 22 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2015_22_5_a4/ LA - ru ID - MAIS_2015_22_5_a4 ER -
%0 Journal Article %A A. M. Kovaleva %A D. A. Kulikov %T Single-mode and dual-mode nongomogeneous dissipative structures in the nonlocal model of erosion %J Modelirovanie i analiz informacionnyh sistem %D 2015 %P 665-681 %V 22 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2015_22_5_a4/ %G ru %F MAIS_2015_22_5_a4
A. M. Kovaleva; D. A. Kulikov. Single-mode and dual-mode nongomogeneous dissipative structures in the nonlocal model of erosion. Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 5, pp. 665-681. http://geodesic.mathdoc.fr/item/MAIS_2015_22_5_a4/
[1] Rudyi A. S., Bachurin V. I., “Spatially nonlocal model of surface erosion by ion bombardment”, Bulletin of the Russian Academy of Sciences, Physics, 72:5 (2008), 586–591 | DOI
[2] Rudyi A. S., Kulikov A. N., Metlitskaya A. V., “Simulation of formation of nanostructures during sputtering of the surface by ion bombardment”, Russian Microelectronics, 40:2 (2011), 98–107 | DOI | MR
[3] Rudyi A. S., Kulikov A. N., Kulikov D. A., Metlitskaya A. V., “High-mode wave reliefs in a spatially nonlocal erosion model”, Russian Microelectronics, 43:4 (2014), 277–283 | DOI | DOI
[4] Sigmund P., “A mechanism of surface micro-roughening by ion bombardment”, J. Mater. Sci, 8 (1973), 1545–1553 | DOI
[5] Bradley R. M., Harper J. M. E., “Theory of ripple topography induced by ion bombardment”, J. Vac. Sci. Technol. A, 6 (1988), 2390–2395 | DOI
[6] Kudriashov N. A., Ryabov P. N., Strichanov M. N., “Chislennoe modelirovanie formirovania nanostructur na poverchnosti ploskich podlozhek pri ionnoy bombardirovke”, Yadernaya fizika i inginiring, 1:2 (2010), 151–158 (in Russian) | MR
[7] Kulikov A. N, Kulikov D. A, “Formation of wavy nanostructures on the surface of flat substrates by ion bombardment”, Computational Mathematics and Mathematical Physics, 52:5 (2012), 800–814 | DOI | MR | Zbl
[8] Krein S. G., Lineinye differentsialnye uravnenia v banakhovom prostranstve, Nauka, M., 1967 (in Russian) | MR
[9] Sobolevskiy P. E., “Ob uravneniach parabolicheskogo tipa v banachovom prostranstve”, Trudy Mosk. matem. ob-va, 10, 1961, 297–350 (in Russian) | MR
[10] Kulikov A. N., “O gladkikh invariantnykh mnogoobraziyach nelineynich operatorov v banachovom prostranstve”, Issledovanie po ustoychivosti i teorii kolebaniy, Yaroslavl, 1976, 114–129 (in Russian) | MR
[11] Marsden J. E., McCraken M., The Hopf bifurcation and its applications, Springer-Verlag, New York–Heidelberg–Berlin, 1976 | MR | MR | Zbl
[12] Kolesov A. Yu., Kulikov A.N., Invariantnye tori nelineynich evolutsionnych uravneniy, Yaroslavl, 2003 (in Russian)
[13] Kolesov A. Yu., Rozov N. Ch., Invariantnye tori nelineynich volnovych uravneniy, Fizmatlit, M., 2004 (in Russian)
[14] Glyzin S.D. Kolesov A.Yu., Lokalniye metody analiza dinamicheskich sistem, Yaroslavl, 2006 (in Russian)
[15] Mischenko E.F. et al., Avtovolnovye protsessy v nelineynich sredach c diffuziey, Fizmatlit, M., 2005 (in Russian)
[16] Kulikov A. N, Kulikov D. A, “Local bifurcations of plane running waves for the generalized cubic Schrodinger eqiation”, Differential equations, 40:9 (2010), 1299–1308 | DOI | MR
[17] Kulikov A. N., Kulikov D. A., Rudyi A. S., “Bifurcation of the nanostructures induced by ion bombardment”, Vestnik Udmurtskogo universiteta, 4 (2011), 86–99 (in Russian) | Zbl
[18] Kashenko S. A., “Asimptotica prostranstvenno-neodnorodnych structur v kogerentnych opticheskich sistemach”, Computational Mathematics and Mathematical Physics, 31:3 (1991), 467–473 (in Russian) | MR
[19] Belan E. P., “Vrachayuchiesya volny v parabolicheskoy zadache s preobrazovannym argumentom”, Dinamicheskie sistemy, 156 (2000), 160–167 (in Russian)
[20] Razgulin S. A., “Ob avtokolebaniyach v nelineynich parabolicheskoy zadache s preobrazovannym argumentom”, Computational Mathematics and Mathematical Physics, 33:1 (1993), 68–80 (in Russian) | MR
[21] Kashchenko I. S., Kashchenko S. A., “Rapidly oscillating spatially inhomogeneous structures in coherent nonlinear optical systems”, Doklady Mathematics, 82:3 (2010), 850–853 | DOI | MR | Zbl