Single-mode and dual-mode nongomogeneous dissipative structures in the nonlocal model of erosion
Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 5, pp. 665-681.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a periodic boundary-value problem for a nonlinear equation with the deviating spatial argument in the case when the deviation is small. This equation is called a spatially nonlocal erosion equation. It describes the formation of undulating surface relief under the influence of ion bombardment and can be interpreted as a development of the well-known Bradley–Harper model. It is shown that the nonhomogeneous surface relief can occur when the stability of the homogeneous states of equilibrium changes. In this boundary value problem the loss of stability can occur at the higher modes and a number of such modes. The mode number depends on many factors. For example, it depends on the angle of incidence. It is also shown that the nonlinear boundary value problem can be included into the class of abstract parabolic equations. Solvability of this problem was studied in the works by P.E. Sobolevsky, and this method assumes to use the analytical theory of semigroups of bounded linear operators. In order to solve the occurring bifurcation problems there were used the investigation methods of dynamical systems with an infinite-dimensional phase space (a space of initial conditions) such as: the method of integral manifolds, the method of Poincare–Dulac normal forms and asymptotic methods of analysis. Both possible in the given situation problems were studied: in codimension one and in codimension two. In particular, asymptotic formulas were obtained for solutions which describe nonhomogeneous undulating surface relief. The question about the stability of these solutions was studied. And the analysis of normal form was given. Also the asymptotic formulas for the nonhomogeneous undulating solutions were obtained. In conclusion some possible interpretations of the obtained results are indicated.
Keywords: nonlocal model of erosion, periodic value boundary problem, stability
Mots-clés : bifurcations.
@article{MAIS_2015_22_5_a4,
     author = {A. M. Kovaleva and D. A. Kulikov},
     title = {Single-mode and dual-mode nongomogeneous dissipative structures in the nonlocal model of erosion},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {665--681},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2015_22_5_a4/}
}
TY  - JOUR
AU  - A. M. Kovaleva
AU  - D. A. Kulikov
TI  - Single-mode and dual-mode nongomogeneous dissipative structures in the nonlocal model of erosion
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2015
SP  - 665
EP  - 681
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2015_22_5_a4/
LA  - ru
ID  - MAIS_2015_22_5_a4
ER  - 
%0 Journal Article
%A A. M. Kovaleva
%A D. A. Kulikov
%T Single-mode and dual-mode nongomogeneous dissipative structures in the nonlocal model of erosion
%J Modelirovanie i analiz informacionnyh sistem
%D 2015
%P 665-681
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2015_22_5_a4/
%G ru
%F MAIS_2015_22_5_a4
A. M. Kovaleva; D. A. Kulikov. Single-mode and dual-mode nongomogeneous dissipative structures in the nonlocal model of erosion. Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 5, pp. 665-681. http://geodesic.mathdoc.fr/item/MAIS_2015_22_5_a4/

[1] Rudyi A. S., Bachurin V. I., “Spatially nonlocal model of surface erosion by ion bombardment”, Bulletin of the Russian Academy of Sciences, Physics, 72:5 (2008), 586–591 | DOI

[2] Rudyi A. S., Kulikov A. N., Metlitskaya A. V., “Simulation of formation of nanostructures during sputtering of the surface by ion bombardment”, Russian Microelectronics, 40:2 (2011), 98–107 | DOI | MR

[3] Rudyi A. S., Kulikov A. N., Kulikov D. A., Metlitskaya A. V., “High-mode wave reliefs in a spatially nonlocal erosion model”, Russian Microelectronics, 43:4 (2014), 277–283 | DOI | DOI

[4] Sigmund P., “A mechanism of surface micro-roughening by ion bombardment”, J. Mater. Sci, 8 (1973), 1545–1553 | DOI

[5] Bradley R. M., Harper J. M. E., “Theory of ripple topography induced by ion bombardment”, J. Vac. Sci. Technol. A, 6 (1988), 2390–2395 | DOI

[6] Kudriashov N. A., Ryabov P. N., Strichanov M. N., “Chislennoe modelirovanie formirovania nanostructur na poverchnosti ploskich podlozhek pri ionnoy bombardirovke”, Yadernaya fizika i inginiring, 1:2 (2010), 151–158 (in Russian) | MR

[7] Kulikov A. N, Kulikov D. A, “Formation of wavy nanostructures on the surface of flat substrates by ion bombardment”, Computational Mathematics and Mathematical Physics, 52:5 (2012), 800–814 | DOI | MR | Zbl

[8] Krein S. G., Lineinye differentsialnye uravnenia v banakhovom prostranstve, Nauka, M., 1967 (in Russian) | MR

[9] Sobolevskiy P. E., “Ob uravneniach parabolicheskogo tipa v banachovom prostranstve”, Trudy Mosk. matem. ob-va, 10, 1961, 297–350 (in Russian) | MR

[10] Kulikov A. N., “O gladkikh invariantnykh mnogoobraziyach nelineynich operatorov v banachovom prostranstve”, Issledovanie po ustoychivosti i teorii kolebaniy, Yaroslavl, 1976, 114–129 (in Russian) | MR

[11] Marsden J. E., McCraken M., The Hopf bifurcation and its applications, Springer-Verlag, New York–Heidelberg–Berlin, 1976 | MR | MR | Zbl

[12] Kolesov A. Yu., Kulikov A.N., Invariantnye tori nelineynich evolutsionnych uravneniy, Yaroslavl, 2003 (in Russian)

[13] Kolesov A. Yu., Rozov N. Ch., Invariantnye tori nelineynich volnovych uravneniy, Fizmatlit, M., 2004 (in Russian)

[14] Glyzin S.D. Kolesov A.Yu., Lokalniye metody analiza dinamicheskich sistem, Yaroslavl, 2006 (in Russian)

[15] Mischenko E.F. et al., Avtovolnovye protsessy v nelineynich sredach c diffuziey, Fizmatlit, M., 2005 (in Russian)

[16] Kulikov A. N, Kulikov D. A, “Local bifurcations of plane running waves for the generalized cubic Schrodinger eqiation”, Differential equations, 40:9 (2010), 1299–1308 | DOI | MR

[17] Kulikov A. N., Kulikov D. A., Rudyi A. S., “Bifurcation of the nanostructures induced by ion bombardment”, Vestnik Udmurtskogo universiteta, 4 (2011), 86–99 (in Russian) | Zbl

[18] Kashenko S. A., “Asimptotica prostranstvenno-neodnorodnych structur v kogerentnych opticheskich sistemach”, Computational Mathematics and Mathematical Physics, 31:3 (1991), 467–473 (in Russian) | MR

[19] Belan E. P., “Vrachayuchiesya volny v parabolicheskoy zadache s preobrazovannym argumentom”, Dinamicheskie sistemy, 156 (2000), 160–167 (in Russian)

[20] Razgulin S. A., “Ob avtokolebaniyach v nelineynich parabolicheskoy zadache s preobrazovannym argumentom”, Computational Mathematics and Mathematical Physics, 33:1 (1993), 68–80 (in Russian) | MR

[21] Kashchenko I. S., Kashchenko S. A., “Rapidly oscillating spatially inhomogeneous structures in coherent nonlinear optical systems”, Doklady Mathematics, 82:3 (2010), 850–853 | DOI | MR | Zbl