Isomorphism of compactifications of vector bundles moduli: nonreduced moduli
Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 5, pp. 629-647.

Voir la notice de l'article provenant de la source Math-Net.Ru

We continue the study of the compactification of the moduli scheme for Gieseker-semistable vector bundles on a nonsingular irreducible projective algebraic surface $S$ with polarization $L$, by locally free sheaves. The relation of main components of the moduli functor for admissible semistable pairs and main components of the Gieseker–Maruyama moduli functor (for semistable torsion-free coherent sheaves) with the same Hilbert polynomial on the surface $S$ is investigated. The compactification of interest arises when families of Gieseker-semistable vector bundles $E$ on the nonsingular polarized projective surface $(S, L)$ are completed by vector bundles $\widetilde E$ on projective polarized schemes $(\widetilde S, \widetilde L)$ of special form. The form of the scheme $\widetilde S$, of its polarization $\widetilde L$ and of the vector bundle $\widetilde E$ is described in the text. The collection $((\widetilde S, \widetilde L), \widetilde E)$ is called a semistable admissible pair. Vector bundles $E$ on the surface $(S, L)$ and $\widetilde E$ on schemes $(\widetilde S, \widetilde L)$ are supposed to have equal ranks and Hilbert polynomials which are compute with respect to polarizations $L$ and $\widetilde L$, respectively. Pairs of the form $((S, L), E)$ named as $S$-pairs are also included into the class under the scope. Since the purpose is to study the compactification of moduli space for vector bundles, only families which contain $S$-pairs are considered. We build up the natural transformation of the moduli functor for admissible semistable pairs to the Gieseker–Maruyama moduli functor for semistable torsion-free coherent sheaves on the surface $(S,L)$, with same rank and Hilbert polynomial. It is demonstrated that this natural transformation is inverse to the natural transformation built in the preceding paper and defined by the standard resolution of a family of torsion-free coherent sheaves with a possibly nonreduced base scheme. The functorial isomorphism constructed determines the scheme isomorphism of compactifications of moduli space for semistable vector bundles on the surface $(S,L)$.
Mots-clés : moduli space, algebraic surface.
Keywords: semistable coherent sheaves, semistable admissible pairs, moduli functor, vector bundles
@article{MAIS_2015_22_5_a2,
     author = {N. V. Timofeeva},
     title = {Isomorphism of compactifications of vector bundles moduli: nonreduced moduli},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {629--647},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2015_22_5_a2/}
}
TY  - JOUR
AU  - N. V. Timofeeva
TI  - Isomorphism of compactifications of vector bundles moduli: nonreduced moduli
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2015
SP  - 629
EP  - 647
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2015_22_5_a2/
LA  - ru
ID  - MAIS_2015_22_5_a2
ER  - 
%0 Journal Article
%A N. V. Timofeeva
%T Isomorphism of compactifications of vector bundles moduli: nonreduced moduli
%J Modelirovanie i analiz informacionnyh sistem
%D 2015
%P 629-647
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2015_22_5_a2/
%G ru
%F MAIS_2015_22_5_a2
N. V. Timofeeva. Isomorphism of compactifications of vector bundles moduli: nonreduced moduli. Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 5, pp. 629-647. http://geodesic.mathdoc.fr/item/MAIS_2015_22_5_a2/

[1] Timofeeva N. V., “Compactification in Hilbert scheme of moduli scheme of stable 2-vector bundles on a surface”, Math. Notes, 82:5 (2007), 677–690 | DOI | DOI | MR | Zbl

[2] Timofeeva N. V., “On a new compactification of the moduli of vector bundles on a surface”, Sb. Math., 199:7 (2008), 1051–1070 | DOI | DOI | MR | Zbl

[3] Timofeeva N. V., “On a new compactification of the moduli of vector bundles on a surface, II”, Sb. Math., 200:3 (2009), 405–427 | DOI | DOI | MR | Zbl

[4] Timofeeva N. V., “On degeneration of surface in Fitting compactification of moduli of stable vector bundles”, Math. Notes, 90 (2011), 142–148 | DOI | DOI | MR | Zbl

[5] Timofeeva N. V., “On a new compactification of the moduli of vector bundles on a surface. III: Functorial approach”, Sb. Math., 202:3 (2011), 413–465 | DOI | DOI | MR | Zbl

[6] Timofeeva N. V., “On a new compactification of the moduli of vector bundles on a surface. IV: Nonreduced moduli”, Sb. Math., 204:1 (2013), 133–153 | DOI | DOI | MR | Zbl

[7] Timofeeva N. V., “On a new compactification of the moduli of vector bundles on a surface. V: Existence of universal family”, Sb. Math., 204:3 (2013), 411–437 | DOI | DOI | MR | Zbl

[8] Timofeeva N. V., “Ob odnom izomorfizme kompaktifikatsii skhemy modulei vektornykh rassloenii”, Model. i analiz inform. sistem, 19:1 (2012), 37–50 ; Timofeeva N. V., On some isomorphism of compactifications of moduli scheme of vector bundles, arXiv: 1103.5327v2

[9] Timofeeva N. V., “On a morphism of compactifications of moduli scheme of vector bundles”, Siberian Electronic Mathematical Reports, 12 (2015), 577–591

[10] Gieseker D., “On the moduli of vector bundles on an algebraic surface”, Annals of Math., 106 (1977), 45–60 | DOI | MR | Zbl

[11] Huybrechts D., Lehn M., The geometry of moduli spaces of sheaves, Vieweg, 1997 | MR | Zbl

[12] Mumford D., Lectures on curves on an algebraic surface, Annals of Mathematical Studies, 59, Princeton Univ. Press, Princeton, 1966 | MR

[13] Atiyah M. F., Macdonald I. G., Introduction to commutative algebra, Addison-Wesley Publ. Co., Massachusets, 1969 | MR | MR | Zbl

[14] Matsumura H., Commutative ring theory, transl. from Japanese by M. Reid, Cambridge Univ. Press, 1986 | MR | Zbl

[15] Hartshorne R., Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977 | DOI | MR | MR | Zbl

[16] Newstead P. E., Lectures on introduction to moduli problems and orbit spaces, Lectures on mathematics and Physics, 51, Springer-Verlag, Berlin–Heidelberg–New York, 1978, Publ. for the Tata Institute for Fundamental Research, Bombay | MR | Zbl