Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2015_22_5_a2, author = {N. V. Timofeeva}, title = {Isomorphism of compactifications of vector bundles moduli: nonreduced moduli}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {629--647}, publisher = {mathdoc}, volume = {22}, number = {5}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2015_22_5_a2/} }
TY - JOUR AU - N. V. Timofeeva TI - Isomorphism of compactifications of vector bundles moduli: nonreduced moduli JO - Modelirovanie i analiz informacionnyh sistem PY - 2015 SP - 629 EP - 647 VL - 22 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2015_22_5_a2/ LA - ru ID - MAIS_2015_22_5_a2 ER -
N. V. Timofeeva. Isomorphism of compactifications of vector bundles moduli: nonreduced moduli. Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 5, pp. 629-647. http://geodesic.mathdoc.fr/item/MAIS_2015_22_5_a2/
[1] Timofeeva N. V., “Compactification in Hilbert scheme of moduli scheme of stable 2-vector bundles on a surface”, Math. Notes, 82:5 (2007), 677–690 | DOI | DOI | MR | Zbl
[2] Timofeeva N. V., “On a new compactification of the moduli of vector bundles on a surface”, Sb. Math., 199:7 (2008), 1051–1070 | DOI | DOI | MR | Zbl
[3] Timofeeva N. V., “On a new compactification of the moduli of vector bundles on a surface, II”, Sb. Math., 200:3 (2009), 405–427 | DOI | DOI | MR | Zbl
[4] Timofeeva N. V., “On degeneration of surface in Fitting compactification of moduli of stable vector bundles”, Math. Notes, 90 (2011), 142–148 | DOI | DOI | MR | Zbl
[5] Timofeeva N. V., “On a new compactification of the moduli of vector bundles on a surface. III: Functorial approach”, Sb. Math., 202:3 (2011), 413–465 | DOI | DOI | MR | Zbl
[6] Timofeeva N. V., “On a new compactification of the moduli of vector bundles on a surface. IV: Nonreduced moduli”, Sb. Math., 204:1 (2013), 133–153 | DOI | DOI | MR | Zbl
[7] Timofeeva N. V., “On a new compactification of the moduli of vector bundles on a surface. V: Existence of universal family”, Sb. Math., 204:3 (2013), 411–437 | DOI | DOI | MR | Zbl
[8] Timofeeva N. V., “Ob odnom izomorfizme kompaktifikatsii skhemy modulei vektornykh rassloenii”, Model. i analiz inform. sistem, 19:1 (2012), 37–50 ; Timofeeva N. V., On some isomorphism of compactifications of moduli scheme of vector bundles, arXiv: 1103.5327v2
[9] Timofeeva N. V., “On a morphism of compactifications of moduli scheme of vector bundles”, Siberian Electronic Mathematical Reports, 12 (2015), 577–591
[10] Gieseker D., “On the moduli of vector bundles on an algebraic surface”, Annals of Math., 106 (1977), 45–60 | DOI | MR | Zbl
[11] Huybrechts D., Lehn M., The geometry of moduli spaces of sheaves, Vieweg, 1997 | MR | Zbl
[12] Mumford D., Lectures on curves on an algebraic surface, Annals of Mathematical Studies, 59, Princeton Univ. Press, Princeton, 1966 | MR
[13] Atiyah M. F., Macdonald I. G., Introduction to commutative algebra, Addison-Wesley Publ. Co., Massachusets, 1969 | MR | MR | Zbl
[14] Matsumura H., Commutative ring theory, transl. from Japanese by M. Reid, Cambridge Univ. Press, 1986 | MR | Zbl
[15] Hartshorne R., Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977 | DOI | MR | MR | Zbl
[16] Newstead P. E., Lectures on introduction to moduli problems and orbit spaces, Lectures on mathematics and Physics, 51, Springer-Verlag, Berlin–Heidelberg–New York, 1978, Publ. for the Tata Institute for Fundamental Research, Bombay | MR | Zbl