Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2015_22_5_a1, author = {S. V. Aleshin and S. D. Glyzin and S. A. Kaschenko}, title = {Dynamical properties of the {Fisher--Kolmogorov--Petrovskii--Piscounov} equation with deviation of the spatial variable}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {609--628}, publisher = {mathdoc}, volume = {22}, number = {5}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2015_22_5_a1/} }
TY - JOUR AU - S. V. Aleshin AU - S. D. Glyzin AU - S. A. Kaschenko TI - Dynamical properties of the Fisher--Kolmogorov--Petrovskii--Piscounov equation with deviation of the spatial variable JO - Modelirovanie i analiz informacionnyh sistem PY - 2015 SP - 609 EP - 628 VL - 22 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2015_22_5_a1/ LA - ru ID - MAIS_2015_22_5_a1 ER -
%0 Journal Article %A S. V. Aleshin %A S. D. Glyzin %A S. A. Kaschenko %T Dynamical properties of the Fisher--Kolmogorov--Petrovskii--Piscounov equation with deviation of the spatial variable %J Modelirovanie i analiz informacionnyh sistem %D 2015 %P 609-628 %V 22 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2015_22_5_a1/ %G ru %F MAIS_2015_22_5_a1
S. V. Aleshin; S. D. Glyzin; S. A. Kaschenko. Dynamical properties of the Fisher--Kolmogorov--Petrovskii--Piscounov equation with deviation of the spatial variable. Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 5, pp. 609-628. http://geodesic.mathdoc.fr/item/MAIS_2015_22_5_a1/
[1] Fisher R. A., “The Wave of Advance of Advantageous Genes”, Annals of Eugenics, 7 (1937), 355–369 | DOI | Zbl
[2] Kolmogorov A., Petrovsky I., Piscounov N., “Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique”, Moscou Univ. Bull. Math., 1 (1937), 1–25 | MR
[3] Murray J. D., Mathematical Biology, v. I, An Introduction, Third Edition, Berlin, 2001
[4] Danilov V. G., Maslov V. P., Volosov K. A., Mathematical Modelling of Heat and Mass Transfer Processes, Kluwer, Dordrecht, 1995 | MR | Zbl
[5] Volpert A., Volpert V., Volpert V., Traveling Wave Solutions of Parabolic Systems, American Mathematical Society, 2000
[6] Kolesov Yu. S., “Matematicheskiye modeli ekologii”, Issledovaniya po ustoychivosti i teorii kolebaniy, Yaroslavl, 1979, 3–40 (in Russian) | MR | Zbl
[7] Kolesov A. Yu., Kolesov Yu. S., Relaxational oscillations in mathematical models of ecology, Trudy Mat. Inst. Steklov., 199, ed. E. F. Mishchenko, Nauka, M., 1993, 126 pp. (in Russian) | Zbl
[8] Gourley S. A., So J. W.-H., Wu J. H., “Nonlocality of Reaction-Diffusion Equations Induced by Delay: Biological Modeling and Nonlinear Dynamics”, Journal of Mathematical Sciences, 124:4 (2004), 5119–5153 | DOI | MR
[9] Britton N. F., Reaction-diffusion equations and their applications to biology, Academic Press, New York, 1986 | MR | Zbl
[10] Britton N. F., “Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model”, SIAM J. Appl. Math., 50 (1990), 1663–1688 | DOI | MR | Zbl
[11] Aleshin S. V., Glyzin S. D., Kaschenko S. A., “Fisher–Kolmogorov–Petrovskii–Piscounov Equation with Delay”, Modeling and Analysis of Information Systems, 22:2 (2015), 304–321 (in Russian)
[12] Kashchenko S. A., “Ob ustanovivshihsja rezhimah uravnenija Hatchinsona s diffuziej”, DAN SSSR, 292:2 (1987), 327–330 (in Russian) | MR
[13] Kashchenko S. A., “Spatial heterogeneous structures in the simplest models with delay and diffusion”, Matem. mod., 2:9 (1990), 49–69 (in Russian) | MR
[14] Kashchenko S. A., “Asymptotics of the Solutions of the Generalized Hutchinson Equation”, Automatic Control and Computer Science, 47:7 (2013), 470–494 | DOI
[15] Glyzin S. D., “Difference approximations of “reaction – diffusion” equation on a segment”, Modeling and Analysis of Information Systems, 16:3 (2009), 96–116 (in Russian)
[16] Wu J., Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, New York, 1996 | MR | Zbl
[17] Glyzin S. D., “Dimensional Characteristics of Diffusion Chaos”, Automatic Control and Computer Sciences, 47:7 (2013), 452–469 | DOI | MR
[18] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Finite-dimensional models of diffusion chaos”, Computational Mathematics and Mathematical Physics, 50:5 (2010), 816–830 | DOI | MR | Zbl
[19] Schuster H. G., Deterministic Chaos: An Introduction, 3 edition, Wiley-VCH, 1995, 320 pp. | MR