Dynamical properties of the Fisher--Kolmogorov--Petrovskii--Piscounov equation with deviation of the spatial variable
Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 5, pp. 609-628.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of density wave propagation of a logistic equation with deviation of the spatial variable and diffusion (Fisher–Kolmogorov equation with deviation of the spatial variable). A Ginzburg–Landau equation was constructed in order to study the qualitative behavior of the solution near the equilibrium state. We analyzed the profile of the wave equation and found conditions for the appearance of oscillatory regimes. The numerical analysis of wave propagation shows that for a suficiently small spatial deviation this equation has a solution similar to the solution of the classical Fisher–Kolmogorov equation. The spatial deviation increasing leads to the existence of the oscillatory component in the spatial distribution of solutions. A further increase of the spatial deviation leads to destruction of the traveling wave. That is expressed in the fact that undamped spatio-temporal fluctuations exist in a neighborhood of the initial perturbation. These fluctuations are close to the solution of the corresponding boundary value problem with periodic boundary conditions. Finally, when the spatial deviation is suficiently large we observe intensive spatio-temporal fluctuations in the whole area of wave propagation.
Keywords: attractor, Fisher-Kolmogorov equation, Ginzburg–Landau equation.
Mots-clés : bifurcation
@article{MAIS_2015_22_5_a1,
     author = {S. V. Aleshin and S. D. Glyzin and S. A. Kaschenko},
     title = {Dynamical properties of the {Fisher--Kolmogorov--Petrovskii--Piscounov} equation with deviation of the spatial variable},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {609--628},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2015_22_5_a1/}
}
TY  - JOUR
AU  - S. V. Aleshin
AU  - S. D. Glyzin
AU  - S. A. Kaschenko
TI  - Dynamical properties of the Fisher--Kolmogorov--Petrovskii--Piscounov equation with deviation of the spatial variable
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2015
SP  - 609
EP  - 628
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2015_22_5_a1/
LA  - ru
ID  - MAIS_2015_22_5_a1
ER  - 
%0 Journal Article
%A S. V. Aleshin
%A S. D. Glyzin
%A S. A. Kaschenko
%T Dynamical properties of the Fisher--Kolmogorov--Petrovskii--Piscounov equation with deviation of the spatial variable
%J Modelirovanie i analiz informacionnyh sistem
%D 2015
%P 609-628
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2015_22_5_a1/
%G ru
%F MAIS_2015_22_5_a1
S. V. Aleshin; S. D. Glyzin; S. A. Kaschenko. Dynamical properties of the Fisher--Kolmogorov--Petrovskii--Piscounov equation with deviation of the spatial variable. Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 5, pp. 609-628. http://geodesic.mathdoc.fr/item/MAIS_2015_22_5_a1/

[1] Fisher R. A., “The Wave of Advance of Advantageous Genes”, Annals of Eugenics, 7 (1937), 355–369 | DOI | Zbl

[2] Kolmogorov A., Petrovsky I., Piscounov N., “Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique”, Moscou Univ. Bull. Math., 1 (1937), 1–25 | MR

[3] Murray J. D., Mathematical Biology, v. I, An Introduction, Third Edition, Berlin, 2001

[4] Danilov V. G., Maslov V. P., Volosov K. A., Mathematical Modelling of Heat and Mass Transfer Processes, Kluwer, Dordrecht, 1995 | MR | Zbl

[5] Volpert A., Volpert V., Volpert V., Traveling Wave Solutions of Parabolic Systems, American Mathematical Society, 2000

[6] Kolesov Yu. S., “Matematicheskiye modeli ekologii”, Issledovaniya po ustoychivosti i teorii kolebaniy, Yaroslavl, 1979, 3–40 (in Russian) | MR | Zbl

[7] Kolesov A. Yu., Kolesov Yu. S., Relaxational oscillations in mathematical models of ecology, Trudy Mat. Inst. Steklov., 199, ed. E. F. Mishchenko, Nauka, M., 1993, 126 pp. (in Russian) | Zbl

[8] Gourley S. A., So J. W.-H., Wu J. H., “Nonlocality of Reaction-Diffusion Equations Induced by Delay: Biological Modeling and Nonlinear Dynamics”, Journal of Mathematical Sciences, 124:4 (2004), 5119–5153 | DOI | MR

[9] Britton N. F., Reaction-diffusion equations and their applications to biology, Academic Press, New York, 1986 | MR | Zbl

[10] Britton N. F., “Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model”, SIAM J. Appl. Math., 50 (1990), 1663–1688 | DOI | MR | Zbl

[11] Aleshin S. V., Glyzin S. D., Kaschenko S. A., “Fisher–Kolmogorov–Petrovskii–Piscounov Equation with Delay”, Modeling and Analysis of Information Systems, 22:2 (2015), 304–321 (in Russian)

[12] Kashchenko S. A., “Ob ustanovivshihsja rezhimah uravnenija Hatchinsona s diffuziej”, DAN SSSR, 292:2 (1987), 327–330 (in Russian) | MR

[13] Kashchenko S. A., “Spatial heterogeneous structures in the simplest models with delay and diffusion”, Matem. mod., 2:9 (1990), 49–69 (in Russian) | MR

[14] Kashchenko S. A., “Asymptotics of the Solutions of the Generalized Hutchinson Equation”, Automatic Control and Computer Science, 47:7 (2013), 470–494 | DOI

[15] Glyzin S. D., “Difference approximations of “reaction – diffusion” equation on a segment”, Modeling and Analysis of Information Systems, 16:3 (2009), 96–116 (in Russian)

[16] Wu J., Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, New York, 1996 | MR | Zbl

[17] Glyzin S. D., “Dimensional Characteristics of Diffusion Chaos”, Automatic Control and Computer Sciences, 47:7 (2013), 452–469 | DOI | MR

[18] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Finite-dimensional models of diffusion chaos”, Computational Mathematics and Mathematical Physics, 50:5 (2010), 816–830 | DOI | MR | Zbl

[19] Schuster H. G., Deterministic Chaos: An Introduction, 3 edition, Wiley-VCH, 1995, 320 pp. | MR