Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2015_22_5_a0, author = {V. N. Belykh and M. I. Bolotov and G. V. Osipov}, title = {Kuramoto phase model with inertia: bifurcations leading to the loss of synchrony and to the emergence of chaos}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {595--608}, publisher = {mathdoc}, volume = {22}, number = {5}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MAIS_2015_22_5_a0/} }
TY - JOUR AU - V. N. Belykh AU - M. I. Bolotov AU - G. V. Osipov TI - Kuramoto phase model with inertia: bifurcations leading to the loss of synchrony and to the emergence of chaos JO - Modelirovanie i analiz informacionnyh sistem PY - 2015 SP - 595 EP - 608 VL - 22 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2015_22_5_a0/ LA - en ID - MAIS_2015_22_5_a0 ER -
%0 Journal Article %A V. N. Belykh %A M. I. Bolotov %A G. V. Osipov %T Kuramoto phase model with inertia: bifurcations leading to the loss of synchrony and to the emergence of chaos %J Modelirovanie i analiz informacionnyh sistem %D 2015 %P 595-608 %V 22 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2015_22_5_a0/ %G en %F MAIS_2015_22_5_a0
V. N. Belykh; M. I. Bolotov; G. V. Osipov. Kuramoto phase model with inertia: bifurcations leading to the loss of synchrony and to the emergence of chaos. Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 5, pp. 595-608. http://geodesic.mathdoc.fr/item/MAIS_2015_22_5_a0/
[1] Winfree A. T., “Biological rhythms and the behavior of coupled oscillators”, J.Theoret. Biol., 16 (1967), 15–42 | DOI
[2] Kuramoto Y., Proc. of Int. Symp. on Mathematical Problems in Theoretical Physics, Lecture Notes in Physics, 39, ed. H. Araki, Springer, New York, 1975
[3] Kuramoto Y., Chemical Oscillations, Waves and Turbulence, Springer Verlag, Berlin/Düsseldorf, 1984 | MR | Zbl
[4] Wiesenfeldt K., Colet P., Strogatz S., “Frequency locking in Josephson junction arrays: Connection with the Kuramoto model”, Physical Review E, 57 (1998), 1563–1567 | DOI
[5] Kozyrev G., Vladimirov A. G., Mandel P., “Global coupling with the time delay in an array of semiconductor lasers”, Physical Review Letters, 85:18 (2000), 3809–3812 | DOI
[6] Michaels D. C., Matyas E. P., Jalife J., “Mechanisms of sinoatrial pacemaker synchronization a new hypothesis”, Circulation Research, 61:5 (1987), 704–714 | DOI
[7] Brown E., Holmes P., Moehlis J., “Globally coupled oscillator networks”, Perspectives and Problems in Nonlinear Science, A Celebratory Volume in Honor of Larry Sirovich, eds. E. Kaplan, J. E. Marsden, K. R. Sreenivasan, Springer, 2003, 183–215 | DOI | MR | Zbl
[8] Kopell N., Ermentrout G. B., “Coupled oscillators and the design of central pattern generators”, Mathematical Biosciences, 90 (1988), 87–109 | DOI | MR | Zbl
[9] Neda Z., Ravasz E., Vicsek T., Brecht Y., Barabasi A.-L., “Physics of the rhythmic applause”, Physical Review E, 61 (2000), 6987–6992 | DOI
[10] Strogatz S. H., Abrams D. M., McRobie A., Eckhardt B., Ott E., “Theoretical mechanics: Crowd synchrony on the Millenium Bridge”, Nature, 438:43–44 (2005), 70640
[11] York R. A., Compton R. C., “Quasi-optical power combining using mutually synchronized oscillator arrays”, IEEE Transactions on Automatic Control, 57:4 (2012), 920–935 | DOI
[12] F. Dorfler, F. Bullo, “Synchronization in Complex Networks of Phase Oscillators: A Survey”, Automatica, 50:6 (2014), 1539–1564 | DOI | MR | Zbl
[13] Acebron J. A., Bonilla L. L., Vicente C. J. P., Ritort F., Spigler R., “The Kuramoto model: A simple paradigm for synchronization phenomena”, Reviews of Modern Physics, 77:1 (2005), 137–185 | DOI
[14] Belykh V. N., Petrov V. S., Osipov G. V., “Dynamics of the Finite-dimensional Kuramoto Model: Global and Cluster Synchronization”, Regular and Chaotic Dynamics, 20:1 (2015), 37–48 | DOI | MR | Zbl
[15] Frasca M., Bergner A., Kurths J., Fortuna L., “Bifurcations in a Star-Like Network of Stuart–Landau Oscillators”, International Journal of Bifurcation and Chaos, 22:7 (2012), 1250173 | DOI | Zbl
[16] Kazanovich Y., Burylko O., Borisyuk R., “Competition for synchronization in a phase oscillator system”, Physica D, 261 (2013), 114–124 | DOI | MR | Zbl
[17] Tanaka H. A., Lichtenberg A. J., Oishi S., “First Order Phase Transition Resulting from Finite Inertia in Coupled Oscillator Systems”, Phys. Rev. Lett., 78:11 (1997), 2104–2107 | DOI
[18] Tanaka H. A., Lichtenberg A. J., Oishi S., “Self-synchronization of coupled oscillators with hysteretic responses”, Physica D, 100:3–4 (1997), 279–300 | DOI | Zbl
[19] Pecora L., Carrol T., “Synchronization in chaotic systems”, Phys. Rev. Lett., 64:8 (1990), 821–824 | DOI | MR | Zbl
[20] Belykh V. N., Belykh I. V., Hasler M., “Connection graph stability method for synchronized coupled chaotic systems”, Physica D, 195 (2004), 159–187 | DOI | MR | Zbl
[21] Belykh V. N., Osipov G. V., Petrov V. S., “Cluster synchrsonization in oscillatory networks”, Chaos, 13 (2008), 037106 | DOI | MR
[22] Tricomi F., “Integrazione di un' equazione differenziale presentatasi in elettrotecnica”, Annali della R. Scuola Normale Superiore di Pisa, 2 (1933), 1–20 | MR
[23] Urabe M., “The least upper bound of a damping coefficient ensuring the existense of a periodic motion of a pendulum under constant torque”, J. Sci. Hiroshima University A, 18 (1955), 379–389 | MR | Zbl
[24] Belykh V. N., Pedersen N., Soerenses O., “Shunted-Josephson-junction model. I. The autonomous case”, Phys. Rev. B, 16 (1977), 4853 | DOI
[25] Belykh V. N., Pedersen N., Soerenses O., “Shunted-Josephson-junction model. II. The nonautonomous case”, Phys. Rev. B, 16 (1977), 4860 | DOI
[26] Olmi S., Navas A., Boccaletti S., Torcini A., “Hysteretic transitions in the Kuramoto model with inertia”, Phys. Rev. E, 90 (2014), 042905 | DOI
[27] Belykh V. N., “Homoclinic and heteroclinic linkages in concrete systems: nonlocal analysis and model maps”, Advances in the Mathematical Sciences, American Math. Soc. Translations. Ser. 2, 200, 2000, 51–62 | MR | Zbl