Kuramoto phase model with inertia: bifurcations leading to the loss of synchrony and to the emergence of chaos
Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 5, pp. 595-608.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a finite-dimensional model of phase oscillators with inertia in the case of star configuration of coupling. The system of equations is reduced to a nonlinearly coupled system of pendulum equations. We prove that the transition from synchronous to asynchronous oscillations occurs via bifurcation of saddle-node equilibrium. In this connection the asynchronous regime can be partially synchronous rotations. We find that the reverse transition from asynchronous to synchronous regime occurs via bifurcation of homoclinic orbit both of the saddle equilibrium point and of the saddle periodic orbit. In the case of homoclinic loop of the saddle point the synchrony appears only from asynchronous mode without partially synchronized rotations. In the case of the homoclinic curve of the saddle periodic orbit the system undergoes a chaotic rotation regime which results in a random return to synchrony. We establish that return transitions are hysteretic in the case of large inertia.
Keywords: oscillators, synchronization, pendulum, star.
@article{MAIS_2015_22_5_a0,
     author = {V. N. Belykh and M. I. Bolotov and G. V. Osipov},
     title = {Kuramoto phase model with inertia: bifurcations leading to the loss of synchrony and to the emergence of chaos},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {595--608},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2015_22_5_a0/}
}
TY  - JOUR
AU  - V. N. Belykh
AU  - M. I. Bolotov
AU  - G. V. Osipov
TI  - Kuramoto phase model with inertia: bifurcations leading to the loss of synchrony and to the emergence of chaos
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2015
SP  - 595
EP  - 608
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2015_22_5_a0/
LA  - en
ID  - MAIS_2015_22_5_a0
ER  - 
%0 Journal Article
%A V. N. Belykh
%A M. I. Bolotov
%A G. V. Osipov
%T Kuramoto phase model with inertia: bifurcations leading to the loss of synchrony and to the emergence of chaos
%J Modelirovanie i analiz informacionnyh sistem
%D 2015
%P 595-608
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2015_22_5_a0/
%G en
%F MAIS_2015_22_5_a0
V. N. Belykh; M. I. Bolotov; G. V. Osipov. Kuramoto phase model with inertia: bifurcations leading to the loss of synchrony and to the emergence of chaos. Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 5, pp. 595-608. http://geodesic.mathdoc.fr/item/MAIS_2015_22_5_a0/

[1] Winfree A. T., “Biological rhythms and the behavior of coupled oscillators”, J.Theoret. Biol., 16 (1967), 15–42 | DOI

[2] Kuramoto Y., Proc. of Int. Symp. on Mathematical Problems in Theoretical Physics, Lecture Notes in Physics, 39, ed. H. Araki, Springer, New York, 1975

[3] Kuramoto Y., Chemical Oscillations, Waves and Turbulence, Springer Verlag, Berlin/Düsseldorf, 1984 | MR | Zbl

[4] Wiesenfeldt K., Colet P., Strogatz S., “Frequency locking in Josephson junction arrays: Connection with the Kuramoto model”, Physical Review E, 57 (1998), 1563–1567 | DOI

[5] Kozyrev G., Vladimirov A. G., Mandel P., “Global coupling with the time delay in an array of semiconductor lasers”, Physical Review Letters, 85:18 (2000), 3809–3812 | DOI

[6] Michaels D. C., Matyas E. P., Jalife J., “Mechanisms of sinoatrial pacemaker synchronization a new hypothesis”, Circulation Research, 61:5 (1987), 704–714 | DOI

[7] Brown E., Holmes P., Moehlis J., “Globally coupled oscillator networks”, Perspectives and Problems in Nonlinear Science, A Celebratory Volume in Honor of Larry Sirovich, eds. E. Kaplan, J. E. Marsden, K. R. Sreenivasan, Springer, 2003, 183–215 | DOI | MR | Zbl

[8] Kopell N., Ermentrout G. B., “Coupled oscillators and the design of central pattern generators”, Mathematical Biosciences, 90 (1988), 87–109 | DOI | MR | Zbl

[9] Neda Z., Ravasz E., Vicsek T., Brecht Y., Barabasi A.-L., “Physics of the rhythmic applause”, Physical Review E, 61 (2000), 6987–6992 | DOI

[10] Strogatz S. H., Abrams D. M., McRobie A., Eckhardt B., Ott E., “Theoretical mechanics: Crowd synchrony on the Millenium Bridge”, Nature, 438:43–44 (2005), 70640

[11] York R. A., Compton R. C., “Quasi-optical power combining using mutually synchronized oscillator arrays”, IEEE Transactions on Automatic Control, 57:4 (2012), 920–935 | DOI

[12] F. Dorfler, F. Bullo, “Synchronization in Complex Networks of Phase Oscillators: A Survey”, Automatica, 50:6 (2014), 1539–1564 | DOI | MR | Zbl

[13] Acebron J. A., Bonilla L. L., Vicente C. J. P., Ritort F., Spigler R., “The Kuramoto model: A simple paradigm for synchronization phenomena”, Reviews of Modern Physics, 77:1 (2005), 137–185 | DOI

[14] Belykh V. N., Petrov V. S., Osipov G. V., “Dynamics of the Finite-dimensional Kuramoto Model: Global and Cluster Synchronization”, Regular and Chaotic Dynamics, 20:1 (2015), 37–48 | DOI | MR | Zbl

[15] Frasca M., Bergner A., Kurths J., Fortuna L., “Bifurcations in a Star-Like Network of Stuart–Landau Oscillators”, International Journal of Bifurcation and Chaos, 22:7 (2012), 1250173 | DOI | Zbl

[16] Kazanovich Y., Burylko O., Borisyuk R., “Competition for synchronization in a phase oscillator system”, Physica D, 261 (2013), 114–124 | DOI | MR | Zbl

[17] Tanaka H. A., Lichtenberg A. J., Oishi S., “First Order Phase Transition Resulting from Finite Inertia in Coupled Oscillator Systems”, Phys. Rev. Lett., 78:11 (1997), 2104–2107 | DOI

[18] Tanaka H. A., Lichtenberg A. J., Oishi S., “Self-synchronization of coupled oscillators with hysteretic responses”, Physica D, 100:3–4 (1997), 279–300 | DOI | Zbl

[19] Pecora L., Carrol T., “Synchronization in chaotic systems”, Phys. Rev. Lett., 64:8 (1990), 821–824 | DOI | MR | Zbl

[20] Belykh V. N., Belykh I. V., Hasler M., “Connection graph stability method for synchronized coupled chaotic systems”, Physica D, 195 (2004), 159–187 | DOI | MR | Zbl

[21] Belykh V. N., Osipov G. V., Petrov V. S., “Cluster synchrsonization in oscillatory networks”, Chaos, 13 (2008), 037106 | DOI | MR

[22] Tricomi F., “Integrazione di un' equazione differenziale presentatasi in elettrotecnica”, Annali della R. Scuola Normale Superiore di Pisa, 2 (1933), 1–20 | MR

[23] Urabe M., “The least upper bound of a damping coefficient ensuring the existense of a periodic motion of a pendulum under constant torque”, J. Sci. Hiroshima University A, 18 (1955), 379–389 | MR | Zbl

[24] Belykh V. N., Pedersen N., Soerenses O., “Shunted-Josephson-junction model. I. The autonomous case”, Phys. Rev. B, 16 (1977), 4853 | DOI

[25] Belykh V. N., Pedersen N., Soerenses O., “Shunted-Josephson-junction model. II. The nonautonomous case”, Phys. Rev. B, 16 (1977), 4860 | DOI

[26] Olmi S., Navas A., Boccaletti S., Torcini A., “Hysteretic transitions in the Kuramoto model with inertia”, Phys. Rev. E, 90 (2014), 042905 | DOI

[27] Belykh V. N., “Homoclinic and heteroclinic linkages in concrete systems: nonlocal analysis and model maps”, Advances in the Mathematical Sciences, American Math. Soc. Translations. Ser. 2, 200, 2000, 51–62 | MR | Zbl