On residual separability of subgroups in split extensions
Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 4, pp. 500-506

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1973, Allenby and Gregoras proved the following statement. Let $G$ be a split extension of a finitely generated group $A$ by the group $B$. 1) If in groups $A$ and $B$ all subgroups (all cyclic subgroups) are finitely separable, then in group $G$ all subgroups (all cyclic subgroups) are finitely separable; 2) if in group $A$ all subgroups are finitely separable, and in group $B$ all finitely generated subgroups are finitely separable, then in group $G$ all finitely generated subgroups are finitely separable. Recall that a group $G$ is said to be a split extension of a group $A$ by a group $B$, if the group $A$ is a normal subgroup of $G$, $B$ is a subgroup of $G$, $G=AB$ and $A\cap B = 1$. Recall also that the subgroup $H$ of a group $G$ is called finitely separable if for every element $g$ of $G$, which does not belong to the subgroup $H$, there exists a homomorphism of $G$ on a finite group in which the image of an element $g$ does not belong to the image of the subgroup $H$. In this paper we obtained a generalization of the Allenby and Gregoras theorem by replacing the condition of the finitely generated group $A$ by a more general one: for any natural number $n$ the number of all subgroups of the group $A$ of index $n$ is finite. In fact, under this condition we managed to obtain a necessary and sufficient condition for finite separability of all subgroups (of all cyclic subgroups, of all finitely generated subgroups) in the group $G$.
Keywords: split extensions, finitely separable subgroups, finitely generated group.
@article{MAIS_2015_22_4_a3,
     author = {A. A. Krjazheva},
     title = {On residual separability of subgroups in split extensions},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {500--506},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2015_22_4_a3/}
}
TY  - JOUR
AU  - A. A. Krjazheva
TI  - On residual separability of subgroups in split extensions
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2015
SP  - 500
EP  - 506
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2015_22_4_a3/
LA  - ru
ID  - MAIS_2015_22_4_a3
ER  - 
%0 Journal Article
%A A. A. Krjazheva
%T On residual separability of subgroups in split extensions
%J Modelirovanie i analiz informacionnyh sistem
%D 2015
%P 500-506
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2015_22_4_a3/
%G ru
%F MAIS_2015_22_4_a3
A. A. Krjazheva. On residual separability of subgroups in split extensions. Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 4, pp. 500-506. http://geodesic.mathdoc.fr/item/MAIS_2015_22_4_a3/