On residual separability of subgroups in split extensions
Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 4, pp. 500-506.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1973, Allenby and Gregoras proved the following statement. Let $G$ be a split extension of a finitely generated group $A$ by the group $B$. 1) If in groups $A$ and $B$ all subgroups (all cyclic subgroups) are finitely separable, then in group $G$ all subgroups (all cyclic subgroups) are finitely separable; 2) if in group $A$ all subgroups are finitely separable, and in group $B$ all finitely generated subgroups are finitely separable, then in group $G$ all finitely generated subgroups are finitely separable. Recall that a group $G$ is said to be a split extension of a group $A$ by a group $B$, if the group $A$ is a normal subgroup of $G$, $B$ is a subgroup of $G$, $G=AB$ and $A\cap B = 1$. Recall also that the subgroup $H$ of a group $G$ is called finitely separable if for every element $g$ of $G$, which does not belong to the subgroup $H$, there exists a homomorphism of $G$ on a finite group in which the image of an element $g$ does not belong to the image of the subgroup $H$. In this paper we obtained a generalization of the Allenby and Gregoras theorem by replacing the condition of the finitely generated group $A$ by a more general one: for any natural number $n$ the number of all subgroups of the group $A$ of index $n$ is finite. In fact, under this condition we managed to obtain a necessary and sufficient condition for finite separability of all subgroups (of all cyclic subgroups, of all finitely generated subgroups) in the group $G$.
Keywords: split extensions, finitely separable subgroups, finitely generated group.
@article{MAIS_2015_22_4_a3,
     author = {A. A. Krjazheva},
     title = {On residual separability of subgroups in split extensions},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {500--506},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2015_22_4_a3/}
}
TY  - JOUR
AU  - A. A. Krjazheva
TI  - On residual separability of subgroups in split extensions
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2015
SP  - 500
EP  - 506
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2015_22_4_a3/
LA  - ru
ID  - MAIS_2015_22_4_a3
ER  - 
%0 Journal Article
%A A. A. Krjazheva
%T On residual separability of subgroups in split extensions
%J Modelirovanie i analiz informacionnyh sistem
%D 2015
%P 500-506
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2015_22_4_a3/
%G ru
%F MAIS_2015_22_4_a3
A. A. Krjazheva. On residual separability of subgroups in split extensions. Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 4, pp. 500-506. http://geodesic.mathdoc.fr/item/MAIS_2015_22_4_a3/

[1] Mal'cev A. I., “O gomomorfizmah na konechnye gruppy”, Uchen. zap. Ivan. gos. ped. in-ta, 18:5 (1958), 49–60 (in Russian)

[2] Lennox J., Robinson D., The theory of infinite soluble groups, Clarendon Press, Oxford, 2004 | MR | Zbl

[3] Burns R. C., “On finitely generated subgroups of free products”, J. Austral. Math. Soc., 12 (1971), 358–364 | DOI | MR | Zbl

[4] Hall M., “Coset representations in free groups”, Trans. Amer. Math. Soc., 67 (1949), 421–432 | DOI | MR | Zbl

[5] Rips E., “An example of a non-LERF group which is a free ptoduct of LERF groups with an amalgamated cyclic subgroup”, Israel J. of math., 70:1 (1990), 104–110 | DOI | MR | Zbl

[6] Allenby R., Doniz D., “A free product of finitely generated nilpotent groups amalgamating a cycle that is not subgroup separable”, Proc. Amer. Math. Soc., 124:4 (1996), 1003–1005 | DOI | MR | Zbl

[7] Allenby R., Gregorac R., “On locally extended residually finite groups”, Lecture Notes Math., 319, 1973, 9–17 | DOI | MR | Zbl

[8] Allenby R., Tang C., “Subgroup separability of generalized free products of freeby-finite groups”, Canad. Math. Bull., 36:4 (1993), 385–389 | DOI | MR | Zbl

[9] Bruuner R. M., Burns R. G., Solitar D., “The subgroup separability of free products of two free groups with cyclic amalgamation”, Contributions to group theory, Contemp. Math., 33, 1984, 90–115 | DOI | MR

[10] Baumslag G., “On the residual finiteness of generalized free products of nilpotent groups”, Trans. Amer. Math. Soc., 106:2 (1963), 193–209 | DOI | MR | Zbl

[11] Romanovskij N. S., “O finitnoj approksimiruemosti svobodnyh proizvedenij otnositel'no vhozhdenija”, Izvestija AN SSSR. Ser. Mat., 33:6 (1969), 1324–1329 (in Russian) | MR

[12] Moldavanskij D. I., Uskova A. A., “O finitnoj otdelimosti podgrupp obobshhennyh svobodnyh proizvedenij grupp”, Chebyshevskij sb., 14:3 (2013), 81–87 (in Russian)

[13] Stebe D., “Residual finiteness of a class of knot groups”, Comm. Pure and Applied Math., 21 (1968), 563–583 | DOI | MR | Zbl

[14] Loginova E. D., “Finitnaja otdelimost' ciklicheskih podgrupp svobodnogo proizvedenija dvuh grupp s kommutirujushhimi podgruppami”, Nauch. tr. Ivan. gos. un-ta. Ser. Matematika, 2000, no. 3, 49–55 (in Russian)

[15] Sokolov E. V., “Finitnaja otdelimost' ciklicheskih podgrupp v nekotoryh obobshhennyh svobodnyh proizvedenijah grupp”, Vestnik molodyh uchenyh IvGU, 2002, no. 2, 7–10 (in Russian)

[16] Azarov D. N., “O gruppah konechnogo obshego ranga”, Vestn. Ivan. gos. un-ta, 2004, no. 3, 100–103 (in Russian)

[17] Azarov D. N., “O finitnoj approksimiruemosti HNN-rasshirenij i obobshhennyh svobodnyh proizvedenij grupp konechnogo ranga”, Sib. mat. zhurn., 54:6 (2013), 1203–1215 (in Russian) | MR | Zbl

[18] Azarov D. N., “O pochti approksimiruemisti konechnymi p-gruppami”, Chebyshevskij sb., 11:3 (2010), 11–21 (in Russian) | Zbl

[19] Azarov D. N., Churakova E. I., “Ob approksimiruemosti konechnymi p-gruppami nekotoryh rasshhepljaemyh rasshirenij”, Vestn. Ivan. gos. un-ta, 2009, no. 2, 68–71 (in Russian)

[20] Kurosh A. G., Teorija grupp, Nauka, M., 1967 (in Russian) | MR