Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2015_22_4_a2, author = {L. S. Kazarin and S. S. Poiseeva}, title = {On finite groups with an irreducible character large degree}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {483--499}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2015_22_4_a2/} }
TY - JOUR AU - L. S. Kazarin AU - S. S. Poiseeva TI - On finite groups with an irreducible character large degree JO - Modelirovanie i analiz informacionnyh sistem PY - 2015 SP - 483 EP - 499 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2015_22_4_a2/ LA - ru ID - MAIS_2015_22_4_a2 ER -
L. S. Kazarin; S. S. Poiseeva. On finite groups with an irreducible character large degree. Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 4, pp. 483-499. http://geodesic.mathdoc.fr/item/MAIS_2015_22_4_a2/
[1] Isaacs I. M., Character theory of finite groups, Academic press, New York–San Francisco–London, 1976, 305 pp. | MR | Zbl
[2] Kazarin L. S., Sagirov I. A., “On the degrees of irreducible characters of finite simple groups”, Proc. of the Steklov Inst. Math. Suppl. (Supplementary issues), 2001, suppl. 2, S71–S81 | MR | Zbl
[3] Snyder N., “Groups with a character of large degree”, Proc. Amer. Math. Soc., 136 (2008), 1893–1903 | DOI | MR | Zbl
[4] Berkovich Y., “Groups with few characters of small degree”, J. Math. Israel, 110 (1999), 325–332 | DOI | MR | Zbl
[5] Isaacs I. M., “Bounding the order of a group with a large degree character”, J. Algebra, 348:1 (2011), 264–275 | DOI | MR | Zbl
[6] Durfee C., Jensen S., “A bound on the order of a group having a large character degree”, J. Algebra, 338 (2011), 197–206 | DOI | MR | Zbl
[7] Lewis M. L., “Bounding group order by large character degrees: A question of Snyder”, Journal of Group Theory, 17:6 (2014), 1081–1116 | DOI | MR | Zbl
[8] Feit W., The representation theory of finite groups, North-Holland Publishing Company, Amsterdam–New York–Oxford, 1982, 510 pp. | MR | Zbl
[9] Belonogov V. A., Predstavlenija i haraktery v teorii konechnyh grupp, UrO AN SSSR, Sverdlovsk, 1990 (in Russian) | MR
[10] Bierbrauer J., “The uniformly 3-homogeneus subsets in $PGL(2,q)$”, J. Algebraic Combinatorics, 4 (1995), 99–102 | DOI | MR | Zbl
[11] Walter J., “The characterization of finite groups with abelian Sylow 2-subgroups”, Ann. Math., 8 (1969), 405–514 | DOI | MR
[12] Chabot P., “Groups whose Sylow 2-subgroups have cyclic commutator groups. I; II; III”, J. Algebra, 19 (1971), 21–30 ; 21 (1972), 312–320 ; 29 (1974), 455–458 | DOI | MR | Zbl | DOI | Zbl | DOI | MR | Zbl
[13] Gorenstein D., Finite Simple Groups. An introduction to their classification, Plenum Publishing Corporation, New York, 1982, 333 pp. | MR | Zbl
[14] Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A., Atlas of finite groups: maximal subgroups and ordinary characters for simple groups, Clarendon Press, Oxford, 1985, 255 pp. | MR | Zbl
[15] Kazarin L. S., Poiseeva S. S., “Finite groups with large irreducible character”, Mathematical Notes, 98:2 (2015), 265–272 | DOI | DOI | MR | Zbl
[16] Gorenstein D., Finite Group, Chelsea publishing company, New York, 1968, 522 pp.
[17] Schmidt O. Y., “Groups all whose subgroups are nilpotent”, Mat. Sb., 31 (1924), 366–372 | Zbl
[18] Amberg B., Kazarin L. S., “ABA-groups with cyclic subgroup B”, Trudy instituta matematiki i mekhaniki UrO RAN, 18, no. 3, 2012, 10–22