Algorithms for majority decoding of group codes
Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 4, pp. 464-482.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a problem of constructive description and justification of the algorithms necessary for a practical implementation of the majority decoder for group codes specified as left ideals of group algebras. In addition to the algorithms needed to implement a classical decoder of J. Massey, it is built a generalization of the classical decoder for codes with unequal protection of characters, which in some cases could be better than the classic one. For use as a classical decoder of J. Massey and its generalization to group codes it was developed an algorithm for constructing decoding trees that lie at the core of these algorithms for majority decoding. Because group codes are defined as left ideals of group algebras, the decoding algorithm for constructing decoding trees allows to build all decoding trees from one tree. On the basis of the generalized decoding algorithm it was developed an algorithm for decoding group codes induced on the subgroup. Application of the developed decoders was illustrated by an example of Reed-Muller-Berman codes and group codes induced by them on a non-Abelian group of affine transformations. In particular, for Reed–Muller–Berman code description and justification of the algorithm for constructing one decoding tree are provided. This three is used for constructing all decoding trees and then it is a built decoder for Reed–Muller–Berman codes and codes induced by them.
Keywords: majority decoder, group algebra, Reed–Muller–Berman Codes.
Mots-clés : group codes
@article{MAIS_2015_22_4_a1,
     author = {V. M. Deundyak and Yu. V. Kosolapov},
     title = {Algorithms for majority decoding of group codes},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {464--482},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2015_22_4_a1/}
}
TY  - JOUR
AU  - V. M. Deundyak
AU  - Yu. V. Kosolapov
TI  - Algorithms for majority decoding of group codes
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2015
SP  - 464
EP  - 482
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2015_22_4_a1/
LA  - ru
ID  - MAIS_2015_22_4_a1
ER  - 
%0 Journal Article
%A V. M. Deundyak
%A Yu. V. Kosolapov
%T Algorithms for majority decoding of group codes
%J Modelirovanie i analiz informacionnyh sistem
%D 2015
%P 464-482
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2015_22_4_a1/
%G ru
%F MAIS_2015_22_4_a1
V. M. Deundyak; Yu. V. Kosolapov. Algorithms for majority decoding of group codes. Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 4, pp. 464-482. http://geodesic.mathdoc.fr/item/MAIS_2015_22_4_a1/

[1] Fedorenko S. V., Metody bystrogo dekodirovaniya lineynykh kodov, GUAP, SPb., 2008, 199 pp. (in Russian)

[2] Massey J. L., Threshold Decoding, MIT Press, Cambridge, 1963 | MR

[3] Clark G. C. Jr., Cain J. B., Error-Correction Coding for Digital Communications, Springer, 1981, 432 pp.

[4] Sidelnikov V. M., “Open coding based on Reed–Muller binary codes”, Diskr. Mat., 6:2 (1994), 3–20 | MR | Zbl

[5] Berman S. D., “On the theory of group codes”, Kibernetika, 3:1 (1967), 31–39 | MR | Zbl

[6] Grushko I. I., “Majority-logic decoding of generalized Reed–Muller codes”, Probl. Inf. Transm., 26:3 (1990), 189–196 | MR | Zbl

[7] Logachev O. A., Yashchenko V. V., “Codes of the Reed–Muller type on a finite abelian group”, Probl. Inf. Transm., 34:2 (1998), 121–133 | MR | Zbl

[8] Tsimmerman K.-Kh., Metody teorii modulyarnykh predstavleniy v algebraicheskoy teorii kodirovaniya, MTsNMO, M., 2011, 246 pp. (in Russian)

[9] Deundyak V. M., Kosolapov Yu. V., “On the Firmness Code Noising to the Statistical Analysis of the Observable Data of Repeated Repetition”, Modeling and Analysis of Information Systems, 19:4 (2012), 110–127 (in Russian) | MR

[10] Kosolapov Yu. V., “Codes for a Generalized Wire-Tap Channel Model”, Problems of Information Transmission, 51:1 (2015), 20–24 | DOI | Zbl

[11] Deundyak V. M., Mkrtichyan V. V., “Issledovanie granits primeneniya skhemy zashchity informatsii, osnovannoy na RS-kodakh”, Diskretnyy analiz i issledovanie operatsiy, 18:3 (2011), 21–38 (in Russian) | MR | Zbl

[12] Sidel'nikov V. M., Teoriya kodirovaniya, Fizmatlit, 2011, 323 pp. (in Russian)

[13] Deundyak V. M., Druzhinina M. A., Kosolapov Yu. V., “Modifikatsiya kriptoanaliticheskogo algoritma Sidel'nikova–Shestakova dlya obobshchennykh kodov Rida–Solomona i ee programmnaya realizatsiya”, Izvestiya vysshikh uchebnykh zavedeniy. Severo-Kavkazskiy region. Ser. Tekhnicheskie nauki, 2006, no. 4, 15–20 (in Russian)

[14] Minder L., Shokrollahi A., “Cryptanalysis of the Sidelnikov cryptosystem”, Eurocrypt 2007 (Barcelona, Spain, 2007), Lecture Notes in Computer Science, 4515, 347–360 | DOI | MR | Zbl

[15] Zinovev, V. A., Zyablov V. V., “Codes with unequal protection of information symbols”, Probl. Inf. Transm., 15:15 (1979), 197–205 | MR | Zbl | Zbl

[16] Curtis C. W., Reiner I., Representation Theory of Finite Groups and Associative Algebras, Intersclence Publishers, New York, 1962 | MR | Zbl

[17] Logachev O. A., Salnikov A. A., Yashchenko V. V., Boolean Functions in Coding Theory and Cryptography, Translations of Mathematical Monographs, 241, AMS, 2012, 334 pp. | MR | MR | Zbl