Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2015_22_4_a0, author = {V. A. Bondarenko and A. V. Nikolaev and D. A. Shovgenov}, title = {1-Skeletons of the spanning tree problems with additional constraints}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {453--463}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2015_22_4_a0/} }
TY - JOUR AU - V. A. Bondarenko AU - A. V. Nikolaev AU - D. A. Shovgenov TI - 1-Skeletons of the spanning tree problems with additional constraints JO - Modelirovanie i analiz informacionnyh sistem PY - 2015 SP - 453 EP - 463 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2015_22_4_a0/ LA - ru ID - MAIS_2015_22_4_a0 ER -
%0 Journal Article %A V. A. Bondarenko %A A. V. Nikolaev %A D. A. Shovgenov %T 1-Skeletons of the spanning tree problems with additional constraints %J Modelirovanie i analiz informacionnyh sistem %D 2015 %P 453-463 %V 22 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2015_22_4_a0/ %G ru %F MAIS_2015_22_4_a0
V. A. Bondarenko; A. V. Nikolaev; D. A. Shovgenov. 1-Skeletons of the spanning tree problems with additional constraints. Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 4, pp. 453-463. http://geodesic.mathdoc.fr/item/MAIS_2015_22_4_a0/
[1] Bondarenko V. A., “Complexity bounds for combinatorial optimization problems in one class of algorithms”, Russian Academy of Sciences Doklady Mathematics, 328:1 (1993), 22–24 (in Russian) | MR | Zbl
[2] Bondarenko V. A., Maksimenko A. N., Geometricheskie konstruktsii i slozhnost' v kombinatornoy optimizatsii, LKI, Moscow, 2008 (in Russian)
[3] Bondarenko V. A., Nikolaev A. V., “Combinatorial and Geometric Properties of the Max-Cut and Min-Cut Problems”, Doklady Mathematics, 88:2 (2013), 516–517 | DOI | DOI | MR | Zbl
[4] Papadimitriou C. H., Steiglitz K., Combinatorial Optimization: Algorithms and Complexity, Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1982 | MR | MR | Zbl
[5] Garey M. R., Johnson D. S., Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman Co., New York, NY, USA, 1979 | MR | MR | Zbl
[6] Rahman M. S., Kaykobad M., “Complexities of some interesting problems on spanning trees”, Information Processing Letters, 94:2 (2005), 93–97 | DOI | MR | Zbl
[7] Fernandes L. M., Gouveia L., “Minimal spanning trees with a constraint on the number of leaves”, European Journal of Operational Research, 104:1 (1998), 250–261 | DOI | Zbl
[8] Goemans M. X., “Minimum Bounded-Degree Spanning Trees”, Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (2006), 273–282
[9] Salamon G., Wiener G., “On finding spanning trees with few leaves”, Information Processing Letters, 105:5 (2008), 164–169 | DOI | MR | Zbl
[10] Singh M., Lau L. C., “Approximating minimum bounded degree spanning trees to within one of optimal”, Proceedings of the Thirty-ninth Annual ACM Symposium on Theory of Computing (2007), 661–670 | MR | Zbl
[11] Brondsted A., An Introduction to Convex Polytopes, Springer-Verlag, 1983 | MR | MR | Zbl
[12] Martin R. K., “Using separation algorithms to generate mixed integer model reformulations”, Operations Research Letters, 10:3 (1991), 119–128 | DOI | MR | Zbl
[13] Belov Y. A., “O plotnosti grafa matroida”, Modeli issledovanija operacij v vychislitelnyh sistemah, Yaroslavl state university, Yaroslavl, 1985, 95–100 (in Russian)
[14] Fujie T., “The maximum-leaf spanning tree problem: Formulations and facets”, Networks, 43:4 (2004), 212–223 | DOI | MR | Zbl
[15] Papadimitriou C. H., “The Adjacency Relation on the Traveling Salesman Polytope is NP-Complete”, Mathematical Programming, 14:1 (1978), 312–324 | DOI | MR | Zbl