Mots-clés : chaotic oscillations.
@article{MAIS_2015_22_3_a7,
author = {E. P. Kubyshkin and A. R. Moryakova},
title = {Investigation of oscillatory solutions of differential-difference equations of~second order in a critical case},
journal = {Modelirovanie i analiz informacionnyh sistem},
pages = {439--447},
year = {2015},
volume = {22},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MAIS_2015_22_3_a7/}
}
TY - JOUR AU - E. P. Kubyshkin AU - A. R. Moryakova TI - Investigation of oscillatory solutions of differential-difference equations of second order in a critical case JO - Modelirovanie i analiz informacionnyh sistem PY - 2015 SP - 439 EP - 447 VL - 22 IS - 3 UR - http://geodesic.mathdoc.fr/item/MAIS_2015_22_3_a7/ LA - ru ID - MAIS_2015_22_3_a7 ER -
%0 Journal Article %A E. P. Kubyshkin %A A. R. Moryakova %T Investigation of oscillatory solutions of differential-difference equations of second order in a critical case %J Modelirovanie i analiz informacionnyh sistem %D 2015 %P 439-447 %V 22 %N 3 %U http://geodesic.mathdoc.fr/item/MAIS_2015_22_3_a7/ %G ru %F MAIS_2015_22_3_a7
E. P. Kubyshkin; A. R. Moryakova. Investigation of oscillatory solutions of differential-difference equations of second order in a critical case. Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 3, pp. 439-447. http://geodesic.mathdoc.fr/item/MAIS_2015_22_3_a7/
[1] Neymark Yu. I., “D-razbienie prostranstva kvazipolinomov (k ustoychivosti linearizovannykh raspredelennykh sistem”, PMM, 13:4 (1949), 349–380 (in Russian) | MR
[2] Kulikov A. N., “O gladkikh invariantnykh mnogoobraziyakh polugruppy nelineynykh operatorov v banakhovom prostranstve”, Issledovaniya po ustoychivosti i teorii kolebaniy, ed. Yu. S. Kolesov, YarGU, Yaroslavl', 1976, 114–129 (in Russian) | MR
[3] Marsden J. E., McCracken M., The Hopf Bifurcation and Its Applications, Springer-Verlag, New York, 1976 | MR | MR | Zbl
[4] Hale J. K., Oscillations in Nonlinear Systems, McGraw-Hill, N.Y., 1963 | MR | Zbl
[5] Glyzin D. S., Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “The Dynamic Renormalization Method for Finding the Maximum Lyapunov Exponent of a Chaotic Attractor”, Differential Equations, 41:2 (2005), 284–289 | MR | Zbl