Investigation of oscillatory solutions of differential-difference equations of~second order in a critical case
Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 3, pp. 439-447.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a differential-difference equation of second order of delay type, containing the delay of the function and its derivatives. Such equations occur in the modeling of electronic devices. The nature of the loss of the zero solution stability is studied. The possibility of stability loss related to the passing of two pairs of purely imaginary roots, that are in resonance 1:3, through an imaginary axis is shown. In this case bifurcating oscillatory solutions are studied. It is noted the existence of a chaotic attractor for which Lyapunov exponents and Lyapunov dimension are calculated. As an investigation techniques we use the theory of integral manifolds and normal forms method for nonlinear differential equations.
Keywords: $D$-splitting, method of integral manifolds, bifurcation theory
Mots-clés : chaotic oscillations.
@article{MAIS_2015_22_3_a7,
     author = {E. P. Kubyshkin and A. R. Moryakova},
     title = {Investigation of oscillatory solutions of differential-difference equations of~second order in a critical case},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {439--447},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2015_22_3_a7/}
}
TY  - JOUR
AU  - E. P. Kubyshkin
AU  - A. R. Moryakova
TI  - Investigation of oscillatory solutions of differential-difference equations of~second order in a critical case
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2015
SP  - 439
EP  - 447
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2015_22_3_a7/
LA  - ru
ID  - MAIS_2015_22_3_a7
ER  - 
%0 Journal Article
%A E. P. Kubyshkin
%A A. R. Moryakova
%T Investigation of oscillatory solutions of differential-difference equations of~second order in a critical case
%J Modelirovanie i analiz informacionnyh sistem
%D 2015
%P 439-447
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2015_22_3_a7/
%G ru
%F MAIS_2015_22_3_a7
E. P. Kubyshkin; A. R. Moryakova. Investigation of oscillatory solutions of differential-difference equations of~second order in a critical case. Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 3, pp. 439-447. http://geodesic.mathdoc.fr/item/MAIS_2015_22_3_a7/

[1] Neymark Yu. I., “D-razbienie prostranstva kvazipolinomov (k ustoychivosti linearizovannykh raspredelennykh sistem”, PMM, 13:4 (1949), 349–380 (in Russian) | MR

[2] Kulikov A. N., “O gladkikh invariantnykh mnogoobraziyakh polugruppy nelineynykh operatorov v banakhovom prostranstve”, Issledovaniya po ustoychivosti i teorii kolebaniy, ed. Yu. S. Kolesov, YarGU, Yaroslavl', 1976, 114–129 (in Russian) | MR

[3] Marsden J. E., McCracken M., The Hopf Bifurcation and Its Applications, Springer-Verlag, New York, 1976 | MR | MR | Zbl

[4] Hale J. K., Oscillations in Nonlinear Systems, McGraw-Hill, N.Y., 1963 | MR | Zbl

[5] Glyzin D. S., Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “The Dynamic Renormalization Method for Finding the Maximum Lyapunov Exponent of a Chaotic Attractor”, Differential Equations, 41:2 (2005), 284–289 | MR | Zbl