Self-excited wave processes in chains of unidirectionally coupled impulse neurons
Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 3, pp. 404-419.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to the mathematical modeling of neural activity. We propose new classes of singularly perturbed differential-difference equations with delay of Volterra type. With these systems, the models as a single neuron or neural networks are described. We study attractors of ring systems of unidirectionally coupled impulse neurons in the case where the number of links in the system increases indefinitely. In order to study periodic solutions of travelling wave type of this system, some special tricks are used which reduce the existence and stability problems for cycles to the investigation of auxiliary system with impulse actions. Using this approach, we establish that the number of stable self-excited waves simultaneously existing in the chain increases unboundedly as the number of links of the chain increases, that is, the well-known buffer phenomenon occurs.
Mots-clés : impulse neurons
Keywords: chain of unidirectionally coupled oscillators, travelling wave, asymptotic behaviour, stability, buffer phenomenon.
@article{MAIS_2015_22_3_a5,
     author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
     title = {Self-excited wave processes in chains of unidirectionally coupled impulse neurons},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {404--419},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2015_22_3_a5/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - Self-excited wave processes in chains of unidirectionally coupled impulse neurons
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2015
SP  - 404
EP  - 419
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2015_22_3_a5/
LA  - ru
ID  - MAIS_2015_22_3_a5
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T Self-excited wave processes in chains of unidirectionally coupled impulse neurons
%J Modelirovanie i analiz informacionnyh sistem
%D 2015
%P 404-419
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2015_22_3_a5/
%G ru
%F MAIS_2015_22_3_a5
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. Self-excited wave processes in chains of unidirectionally coupled impulse neurons. Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 3, pp. 404-419. http://geodesic.mathdoc.fr/item/MAIS_2015_22_3_a5/

[1] Mishchenko E. F., Pontryagin L. S., “Periodicheskiye resheniya sistem differentsial'nykh uravneniy, blizkiye k razryvnym”, Dokl. AN SSSR, 102:5 (1955), 889–891 (in Russian)

[2] Kolesov A. Yu., Kolesov Yu. S., “Relaxational oscillations in mathematical models of ecology”, Proceedings of the Steklov Institute of Mathematics, 199, 1995, 1–126 | MR | MR

[3] Kolesov A. Yu., Mishchenko E. F., Rozov N. Kh., “Relay with delay and its $C^1$-approximation”, Dynamical systems and related topics, Proceedings of the Steklov Institute of Mathematics, 216, 1997, 119–146 | MR | Zbl

[4] Kolesov A. Yu., Rozov N. Kh., “Discrete autowaves in delay systems in ecology”, Doklady mathematics, 82:2 (2010), 794–797 | MR | Zbl

[5] Kolesov A. Yu., Mishchenko E. F., Rozov N. Kh., “A modification of Hutchinson's equation”, Computational Mathematics and Mathematical Physics, 50:12 (2010), 1990–2002 | MR | Zbl

[6] Kolesov A. Yu., Rozov N. Kh., “The theory of relaxation oscillations for Hutchinson's equation”, Sbornik: Mathematics, 202:6 (2011), 829–858 | MR | Zbl

[7] Kolesov A. Yu., Rozov N. Kh., “Self-excited wave processes in chains of diffusion-linked delay equations”, Russian Math. Surveys, 67:2 (2012), 297–343 | MR | Zbl

[8] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Relaxation self-oscillations in neuron systems, I”, Differential Equations, 47:7 (2011), 927–941 | MR | Zbl

[9] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Relaxation self-oscillations in neuron systems, II”, Differential Equations, 47:12 (2011), 1697–1713 | MR | Zbl

[10] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Relaxation self-oscillations in neuron systems, III”, Differential Equations, 48:2 (2012), 159–175 | MR | Zbl

[11] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Discrete autowaves in neural systems”, Computational Mathematics and Mathematical Physics, 2:5 (2012), 702–719 | MR | Zbl

[12] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Modeling the Bursting Effect in Neuron Systems”, Mathematical Notes, 93:5 (2013), 676–690 | MR | Zbl

[13] Mishchenko E. F., Rozov N. Kh., Differential equations with small parameters and relaxation oscillations, Plenum Press, 1980, 228 pp. | MR | MR | Zbl

[14] Mishchenko E. F., Kolesov Yu. S., Kolesov A. Yu., Rozov N. Kh., Periodicheskiye dvizheniya i bifurkatsionnyye protsessy v singulyarno vozmushchennykh sistemakh, Fizmatlit, M., 1995 (in Russian) | MR

[15] Kashchenko S. A., Mayorov V. V., Modeli volnovoy pamyati, Knizhnyy dom “LIBROKOM”, M., 2009, 288 pp. (in Russian)

[16] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Periodic traveling-wave-type solutions in circular chains of unidirectionally coupled equations”, Theoretical and Mathematical Physics, 175:1 (2013), 499–517 | MR | Zbl

[17] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Autowave processes in continual chains of unidirectionally coupled oscillators”, Proceedings of the Steklov Institute of Mathematics, 285, no. 1, 2014, 81–98 | Zbl

[18] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Buffering effect in continuous chains of unidirectionally coupled generators”, Theoretical and Mathematical Physics, 181:2 (2014), 1349–1366 | MR

[19] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Buffer Phenomenon and Chaos in Circular Chains of Unidirectionally Coupled Oscillators”, Doklady Mathematics, 90:1 (2014), 509–513 | MR | Zbl

[20] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “The buffer phenomenon in ring-like chains of unidirectionally connected generators”, Izvestiya: Mathematics, 78:4 (2014), 708–743 | MR | Zbl