Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2015_22_3_a3, author = {N. D. Bykova and S. A. Kaschenko}, title = {Corporate dynamics of systems of logistic delay equations with large delay control}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {372--391}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2015_22_3_a3/} }
TY - JOUR AU - N. D. Bykova AU - S. A. Kaschenko TI - Corporate dynamics of systems of logistic delay equations with large delay control JO - Modelirovanie i analiz informacionnyh sistem PY - 2015 SP - 372 EP - 391 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2015_22_3_a3/ LA - ru ID - MAIS_2015_22_3_a3 ER -
%0 Journal Article %A N. D. Bykova %A S. A. Kaschenko %T Corporate dynamics of systems of logistic delay equations with large delay control %J Modelirovanie i analiz informacionnyh sistem %D 2015 %P 372-391 %V 22 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2015_22_3_a3/ %G ru %F MAIS_2015_22_3_a3
N. D. Bykova; S. A. Kaschenko. Corporate dynamics of systems of logistic delay equations with large delay control. Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 3, pp. 372-391. http://geodesic.mathdoc.fr/item/MAIS_2015_22_3_a3/
[1] Kashchenko S. A., “Dynamics of the Logistic Equation with Delay and Delay Control”, International Journal of Bifurcation and Chaos, 24:8 (2014), 1440017 | MR | Zbl
[2] Hale J. K., Theory of functional differential equations, Springer-Verlag, New York, 1977 | MR | MR | Zbl
[3] Diekmann O., van Gils S. A., Verduyn Lunel S. M., Walther H.-O., Delay Equations: Functional-, Complex-, and Nonlinear Analysis, Springer-Verlag, New York, 1995 | MR | Zbl
[4] Wu J., Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, 1996 | MR | Zbl
[5] Haken H., Brain Dinamics; Synchronization and Activity Patterns in Pulse-Coupled Neural Nets with Delays and Noise, Springer, 2002 | MR
[6] May R. M., Stability and Complexity in Model Ecosystems, 2nd ed., Princeton University Press, Princeton, 1974
[7] Kuramoto Y., Chemical Oscillations, Waves and Turbulence, Springer, 1984 | MR | Zbl
[8] Kuang Y., Delay Differential Equations with Applications in Population Dynamics, Academic Press, New York, 1993 | MR | Zbl
[9] Huang W., “Global dynamics for a reaction-diffusion equation with time delay”, J. Differential Equations, 143 (1998), 293–326 | MR | Zbl
[10] Pyragas K., “Continious control of chaos by self-controlling feedback”, Phys. Lett. A, 170 (1992), 42
[11] Nakajima H., Ueda Y., “Limitation of generalized delayed feedback control of chaos”, Physica D, 111 (1998), 143 | MR | Zbl
[12] Hovel P., Scholl E., “Control of unstable steady states by time-delayed feedback methods”, Physical Review E, 75 (2005), 046203 | MR
[13] Fiedler B., Flunkert V., Georgi M., Hovel P., Scholl E., “Refuting the odd number limitation of time-delayed feedback control”, Phys. Rev. Lett., 98 (2007), 114101
[14] Kashchenko S. A., “Asymptotics of periodical solution of Hutchinson generalized equation”, Studies of Stability and Theory of Oscillations, YarGU, Yaroslavl, 1981, 64–85 (in Russian)
[15] Wright E. M., “A non-linear differential equation”, J. Reine Angew. Math., 194:1–4 (1955), 66–87 | MR | Zbl
[16] Kakutani S., Markus L., “On the non-linear difference-differential equation $y'(t)=\left(a - by(t-\tau)\right)y(t)$ contributions to the theory of non-linear oscillations”, Ann. Math. Stud., IV, Princeton University Press, Princeton, 1958, 1–18 | MR
[17] Jones G. S., “The existence of periodic solutions of $f^{\prime}(x) = -\alpha f(x - 1) [1 + f(x)]$”, J. Math. Anal. and Appl., 5 (1962), 435–450 | MR | Zbl
[18] Kashchenko S. A., “Asymptotics of Solutions of the Generalized Hutchinson's Equation”, Model. and Anal. Inform. Sist., 19:3 (2012), 32–62 (in Russian)
[19] Grigorieva E. V., Kashchenko S. A., Relaxation oscillations in lasers, URSS, M., 2013 (in Russian)
[20] Kashchenko S. A., “Relaxation Oscillations in a System with Delays Modeling the Predator-Prey Problem”, Model. and Anal. Inform. Sist., 20:1 (2013), 52–98 (in Russian)
[21] Kashchenko S. A., “Study by large parameter method of system of nonlinear differential-difference equations modeling 'predator-sacrifice' problem”, Dokl. Akad. Nauk USSR, 266 (1982), 792–795 | MR | Zbl
[22] Kashchenko S. A., “Stationary States of a Delay Differentional Equation of Insect Population's Dynamics”, Model. and Anal. Inform. Sist., 19:5 (2012), 18–34 (in Russian)
[23] Kashchenko S. A., “Stationary regimes of equation describing numbers of insects”, Reports Academy of Sciences of the USSR, 273 (1983), 328–330 (in Russian) | MR
[24] Edwards R. E., Functional Analysis: Theory and Applications, Dover Pub., New York, 1965 | MR
[25] Kashchenko S. A., “Bifurcations in the neighborhood of a cycle under small perturbations with a large delay”, Zh. vychisl. mat. i mat. fiz., 40:5 (2000), 693–702 (in Russian)
[26] Marsden J., McCracken M., The Hopf Bifurcation and Its Applications, Springer-Verlag, New York, 1976 | MR | MR | Zbl
[27] Hartman P., Ordinary Differential Equations, Wiley, 1964 | MR | MR | Zbl
[28] Kashchenko S. A., “Application of method of normalization for studying of differential-difference equations with small multiplier for derivative”, Differential Equations, 25:8 (1989), 1448–1451 (in Russian) | MR
[29] Kaschenko S. A., “Normalization in the systems with small diffusion”, International Journal of Bifurcations and chaos, 6:7 (1996), 1093–1109 | MR | Zbl
[30] Kashchenko S. A., “On the quasi-normal forms for parabolic equations with small diffusion”, Reports Academy of Sciences of the USSR, 299 (1988), 1049–1053 (in Russian)
[31] Kashchenko S. A., “Local Dynamics of non-linear singular perturbation systems with delay”, Diff. Equations, 35:10 (1999), 1343–1355 (in Russian) | MR
[32] Kashchenko S. A., “The Ginzburg-Landau equation as a normal form for a second-order difference-differential equation with a large delay”, Zh. Vychisl. Mat. Mat. Fiz., 38:3 (1998), 457–465 (in Russian) | MR
[33] Kashchenko I. S., “Dynamics of an Equation with a Large Coefficient of Delay Control”, Doklady Mathematics, 83:2 (2011), 258–261 | MR | Zbl
[34] Kashchenko I. S., “Asymptotic Study of the Corporate Dynamics of Systems of Equations Coupled by Delay Control”, Doklady Mathematics, 85:2 (2012), 163–166 | MR | Zbl
[35] Kashchenko S. A., “Dinamika logisticheskogo uravneniya s zapazdyvaniem i zapazdyvayushchim upravleniem”, Modelirovanie i analiz informatsionnykh sistem, 21:5 (2014), 61–77 (in Russian)
[36] Kashchenko S. A., “Dinamika nelineynogo uravneniya vtorogo poryadka s bol'shim koeffitsientom zapazdyvayushchego upravleniya”, Doklady Akademii nauk, 457:6 (2014), 635–638 (in Russian)
[37] Kashchenko S. A., “Asymptotics of the Solutions of the Generalized Hutchinson Equation”, Automatic Control and Computer Science, 47:7 (2013), 470–494
[38] Kashchenko I. S., “Lokal'naya dinamika uravneniya s raspredelennym zapazdyvaniem”, Differentsial'nye uravneniya, 50:1 (2014), 17–26 (in Russian)
[39] Kashchenko I., “Normalization of a system with two large delays”, International Journal of Bifurcation and Chaos, 24:8 (2014), 1440021 | MR | Zbl
[40] Kashchenko I. S., Kashchenko S. A., “Lokal'naya dinamika uravneniya s bol'shim zapazdyvaniem i raspredelennym otkloneniem prostranstvennoy peremennoy”, Sibirskiy matematicheskiy zhurnal, 55:2 (2014), 315–323 (in Russian) | MR
[41] Kashchenko I. S., “Asymptotic analysis of the behavior of solutions to equations with large delay”, Doklady Mathematics, 78:1 (2008), 570–573 | MR | Zbl
[42] Kashchenko I. S., Kashchenko S. A., “Dinamika uravneniya s bol'shim prostranstvenno-raspredelennym upravleniem”, Doklady Akademii Nauk, 438:1 (2011), 30–34 (in Russian)
[43] Kashchenko S. A., “Lokal'naya dinamika prostranstvenno-raspredelennogo logisticheskogo uravneniya s zapazdyvaniem i bol'shim koeffitsientom perenosa”, Differentsial'nye uravneniya, 50:1 (2014), 73 (in Russian) | MR