Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2015_22_3_a1, author = {I. D. Remizov}, title = {Solution to a parabolic differential equation in {Hilbert} space via {Feynman} {formula~-~I}}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {337--355}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MAIS_2015_22_3_a1/} }
TY - JOUR AU - I. D. Remizov TI - Solution to a parabolic differential equation in Hilbert space via Feynman formula~-~I JO - Modelirovanie i analiz informacionnyh sistem PY - 2015 SP - 337 EP - 355 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2015_22_3_a1/ LA - en ID - MAIS_2015_22_3_a1 ER -
I. D. Remizov. Solution to a parabolic differential equation in Hilbert space via Feynman formula~-~I. Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 3, pp. 337-355. http://geodesic.mathdoc.fr/item/MAIS_2015_22_3_a1/
[1] Bogachev V. I., Gaussian Measures, Amer. Math. Soc., Providence, 1998 | Zbl
[2] Bogachev V. I., Smolyanov O. G., Real and functional analysis: university course, RCD, M.–Izevsk, 2009 (in Russian)
[3] Butko Ya. A., The Feynman–Kac–Ito formula for an infinite-dimensional Schrödinger equation with scalar and vector potentials
[4] Butko Ya. A., “Feynman formula for semigroups with multiplicatevely perturbed generators”, Science and Education, 10, October (2011), 77-305691/239563
[5] Daletsky Yu. L., Fomin S. V., Measures and differential equations in infinite-dimensional space, Kluwer, 1991
[6] Egorov A. D., Zidkov E. P., Lobanov Yu. Yu., Introduction to the theory and applications of the functional integration, Fizmatlit, M., 2006 (in Russian)
[7] Krylov N. V., Lectures on Elliptic and Parabolic Equations in Holder Spaces, Graduate Texts in Mathematics, 12, AMS, 1996 | MR | Zbl
[8] Lobanov Yu. Yu., Methods of the approximate functional integrating for the numerical research in the quantum physics, Dr. Sci. dissertation thesis, M., 2009 (in Russian)
[9] Smolyanov O. G., Analysis on the topological linear spaces and its applications, MSU, M., 1979 (in Russian)
[10] Smolyanov O. G., Shavgulidze E. T., Continual integrals, MSU, M., 1990 (in Russian)
[11] Smolyanov O. G., Shamarov N. N., Kpekpassi M., “Feynman-Kac and Feynman Formulas for Infinite-Dimensional Equations with Vladimirov Operator”, Doklady Mathematics, 83:3 (2011), 389–393 | MR | Zbl
[12] Smolyanov O. G., Shamarov N. N., “Hamiltonian Feynman formulas for equations containing the Vladimirov operator with variable coefficients”, Doklady Mathematics, 84:2, 689–694 | DOI | MR | Zbl
[13] Schwartz L., Analyse mathematique, v. I, Hermann, 1967 | MR | Zbl
[14] Botelho L. C. L., Non-linear diffusion in $\mathbb{R}^D$ and Hilbert Spaces, a Cylindrical/Functional Integral Study, arXiv: 1003.0048v1
[15] Butko Ya. A., Grothaus M., Smolyanov O. G., “Lagrangian Feynman formulas for second-order parabolic equations in bounded and unbounded domains”, Infinite Dimansional Analyasis, Quantum Probability and Related Topics, 13:3 (2010), 377–392 | MR | Zbl
[16] Butko Ya. A., Schilling R. L., Smolyanov O. G., Lagrangian and Hamiltonian Feynman formulae for some Feller semigroups and their perturbations, arXiv: 1203.1199v1 | MR
[17] Cartan H., Differential Calculus, Kershaw Publishing Company, 1971 | MR
[18] Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, 1983 | MR | Zbl
[19] Plyashechnik A. S., “Feynman formula for Schrödinger-Type equations with time- and space-dependent coefficients”, Russian Journal of Mathematical Physics, 19:3 (2012), 340–359 | MR | Zbl
[20] Plyashechnik A. S., “Feynman formulas for second-order parabolic equations with variable coefficients”, Russian Journal of Mathematical Physics, 20:3 (2013), 377–379 | MR | Zbl
[21] Da Prato G., Introduction to infinite-dimensional analysis, Springer, 2006 | MR | Zbl
[22] Da Prato G., Zabczyk J., Second Order Partial Differential Equations in Hilbert Spaces, London Mathematical Society Lecture Notes Series, 293, 2004
[23] Fernique X., “Intégrabilité des vecteurs gaussiens”, C. R. Acad. Sci. Paris, Sér. A, 270, 1698–1699 | MR | Zbl
[24] Feynman R. P., “Space-time approach to nonrelativistic quantum mechanics”, Rev. Mod. Phys., 20 (1948), 367–387 | MR
[25] Feynman R. P., “An operation calculus having applications in quantum electrodynamics”, Phys. Rev., 84 (1951), 108–128 | MR | Zbl
[26] Engel K.-J., Nagel R., One-Parameter Semigroups for Linear Evolution Equations, Springer, 2000 | MR | Zbl
[27] Dieudonné J., Foundations of modern analysis, Academic Press, New York–London, 1969 | MR | Zbl
[28] Remizov I. D., “Solution of a Cauchy problem for a diffusion equation in a Hilbert space by a Feynman formula”, Russian Journal of Mathematical Physics, 19:3 (2012), 360–372 | MR | Zbl
[29] Orlov Yu. N., Sakbaev V. Zh., Smolyanov O. G., “Feynman formulas as a method of averaging random Hamiltonians”, Proceedings of the Steklov Institute of Mathematics, 285, no. 1, 2014, 222–232 | Zbl
[30] Simon B., Functional Integration and Quantum Physics, Academic Press, 1979 | MR | Zbl
[31] Smolyanov O. G., Tokarev A. G., Truman A., “Hamiltonian Feynman path integrals via the Chernoff formula”, J. Math. Phys., 43:10 (2002), 5161–5171 | MR | Zbl
[32] Remizov I. D., The latest version of the preprint, arXiv: 1409.8345
[33] Smolyanov O. G., “Feynman formulae for evolutionary equations”, Trends in Stochastic Analyasis, London Mathematical Society Lecture Notes Series, 353, 2009 | MR | Zbl
[34] Kuo H.-S., “Gaussian measures in Banach space”, Lecture Notes in Mathematics, 463, Springer-Verlag, 1975 | MR | Zbl
[35] Chernoff P. R., “Note on product formulas for operator semigroups”, J. Functional Analysis, 2:2 (1968), 238–242 | MR | Zbl
[36] Smolyanov O. G., Weizsäcker H. V., Wittich O., “Chernoff's Theorem and Discrete Time Approximations of Brownian Motion on Manifolds”, Potential Analysis, 26:1, February (2007), 1–29 | MR | Zbl
[37] Butko Ya. A., “Feynman formulae for evolution semigroups”, Science and Education, 2014, no. 3, 95–132 (in Russian) | DOI