Uniformity of vector bundles of finite rank on complete intersections of~finite codimension in a linear ind-Grassmannian
Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 2, pp. 209-218.

Voir la notice de l'article provenant de la source Math-Net.Ru

A linear projective ind-variety $\mathbf X$ is called $1$-connected if any two points on it can be connected by a chain of lines $l_1, l_2,...,l_k$ in $\mathbf X$, such that $l_i$ intersects $l_{i+1}$. A linear projective ind-variety $\mathbf X$ is called $2$-connected if any point of $\mathbf X$ lies on a projective line in $\mathbf X$ and for any two lines $l$ and $l'$ in $\mathbf X$ there is a chain of lines $l=l_1, l_2,...,l_k=l'$, such that any pair $(l_i,l_{i+1})$ is contained in a projective plane $\mathbb P^2$ in $\mathbf X$. In this work we study an ind-variety ${\mathbf X}$ that is a complete intersection in the linear ind-Grassmannian $\mathbf{G}=\underrightarrow{\lim}G(k_m,n_m)$. By definition, ${\mathbf X}$ is an intersection of ${\mathbf{G}}$ with a finite number of ind-hypersufaces $\mathbf{Y_i}=\underrightarrow{\lim}Y_{i,m}, {m\geq1}$, of fixed degrees $d_i$, $i=1,...,l$, in the space $\mathbf{P}^{\infty}$, in which the ind-Grassmannian $\mathbf{G}$ is embedded by Plücker. One can deduce from work [17] that $\mathbf X$ is $1$-connected. Generalising this result we prove that $\mathbf X$ is $2$-connected. We deduce from this property that any vector bundle $\mathbf{E}$ of finite rank on $\mathbf X$ is uniform, i. e. the restriction of $\mathbf{E}$ to all projective lines in $\mathbf X$ has the same splitting type. The motiavtion of this work is to extend theorems of Barth–Van de Ven–Tjurin–Sato type to complete intersections of finite codimension in ind-Grassmannians.
@article{MAIS_2015_22_2_a4,
     author = {S. M. Yermakova},
     title = {Uniformity of vector bundles of finite rank on complete intersections of~finite codimension in a linear {ind-Grassmannian}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {209--218},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2015_22_2_a4/}
}
TY  - JOUR
AU  - S. M. Yermakova
TI  - Uniformity of vector bundles of finite rank on complete intersections of~finite codimension in a linear ind-Grassmannian
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2015
SP  - 209
EP  - 218
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2015_22_2_a4/
LA  - ru
ID  - MAIS_2015_22_2_a4
ER  - 
%0 Journal Article
%A S. M. Yermakova
%T Uniformity of vector bundles of finite rank on complete intersections of~finite codimension in a linear ind-Grassmannian
%J Modelirovanie i analiz informacionnyh sistem
%D 2015
%P 209-218
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2015_22_2_a4/
%G ru
%F MAIS_2015_22_2_a4
S. M. Yermakova. Uniformity of vector bundles of finite rank on complete intersections of~finite codimension in a linear ind-Grassmannian. Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 2, pp. 209-218. http://geodesic.mathdoc.fr/item/MAIS_2015_22_2_a4/

[1] Altman A. B., Kleiman S. L., “Foundations of the theory of Fano schemes”, Composito Math., 34:1 (1977), 3–47 | MR | Zbl

[2] Barth W., Van de Ven A., “On the geometry in codimension 2 in Grassmann manifolds”, Lecture Notes in Math., 412, Springer-Verlag, 1974, 1–35 | MR

[3] Birkhoff George David, “Singular points of ordinary linear differential equations”, Transactions of the American Mathematical Society, 10:4 (1909), 436–470 | DOI | MR | Zbl

[4] Coand$\rm{\check{a}}$ I., Trautmann G., “The splitting criterion of Kempf and the Babylonian tower theorem”, Communications in Algebra, 34:7 (2006), 2485–2488 | DOI | MR | Zbl

[5] Donin J., Penkov I., “Finite rank vector bundles on inductive limits of Grassmannians”, IMRN, 2003, no. 34, 1871–1887 | MR | Zbl

[6] Eisenbud D., Harris J., 3264 All That Intersection Theory in Algebraic Geometry, , 2013 http://isites.harvard.edu/fs/docs/icb.topic720403.files/book.pdf

[7] Griffiths P. A., Harris J., Principles of Algebraic Geometry, Wiley, New York, 1978 | MR | Zbl

[8] Grothendieck A., “Sur la classification des fibres holomorphes sur la sphere de Riemann”, American Journal of Mathematics, 79:1 (1957), 121–138 | DOI | MR | Zbl

[9] Smith K., An invitation to algebraic geometry, Springer-Verlag, New York, 2000 | MR | Zbl

[10] Okonek C., Schneider M., Spindler H., Vector bundles on complex projective spaces, Progress in Mathematics, 3, Birkhauser, Boston–Basel–Stuttgart, 1980 | MR | Zbl

[11] Sato E., “On the decomposability of infinitely extendable vector bundles on projective spaces and Grassmann varieties”, J. Math. Kyoto Univ., 17 (1977), 127–150 | MR | Zbl

[12] Penkov I., Tikhomirov A. S., “Linear ind-Grassmannians”, Pure and Applied Mathematics Quarterly, 10:2 (2014), 289–323 | DOI | MR | Zbl

[13] Penkov I., Tikhomirov A. S., On the Barth–Van de Ven–Tyurin–Sato theorem, arXiv: 1405.3897[math.AG]

[14] Penkov I., Tikhomirov A. S., “Rank-2 vector bundles on ind-Grassmannians”, Algebra, arithmetic,and geometry, in honor of Yu. I. Manin, v. II, Progr. Math., 270, Birkhauser, Boston–Basel–Berlin, 2009, 555–572 | MR | Zbl

[15] Tyurin A. N., “Vector bundles of finite rank over infinite varieties”, Math. USSR Izvestija, 1976, no. 10, 1187–1204

[16] Hartshorne R., Algebraic Geometry, Springer-Verlag, New York, 1977 | MR | Zbl

[17] Yermakova S. M., “On the variety of paths on complete intersections in Grassmannians”, Modeling and Analysis of Information Systems, 21:4 (2014), 35–46 (in Russian)

[18] Penkov I. B., Tikhomirov A. S., “Triviality of vector bundles on twisted ind-Grassmannians”, Sb. Math., 202:1 (2011), 61–99 | DOI | DOI | MR | Zbl

[19] Harris J., Algebraic Geometry. A first course, MCCME, M., 2006 | MR

[20] Shafarevich I. R., Foundations of Algebraic Geometry, MCCME, M., 2007