Solutions stability of initial boundary problem, modeling of dynamics of~some discrete continuum mechanical system
Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 2, pp. 197-208.

Voir la notice de l'article provenant de la source Math-Net.Ru

The solution stability of an initial boundary problem for a linear hybrid system of differential equations, which models the rotation of a rigid body with two elastic rods located in the same plane is studied in the paper. To an axis passing through the mass center of the rigid body perpendicularly to the rods location plane is applied the stabilizing moment proportional to the angle of the system rotation, derivative of the angle, integral of the angle. The external moment provides a feedback. A method of studying the behavior of solutions of the initial boundary problem is proposed. This method allows to exclude from the hybrid system of differential equations partial differential equations, which describe the dynamics of distributed elements of a mechanical system. It allows us to build one equation for an angle of the system rotation. Its characteristic equation defines the stability of solutions of all the system. In the space of feedback-coefficients the areas that provide the asymptotic stability of solutions of the initial boundary problem are built up.
Keywords: solution stability, discrete continuum mechanical systems, hybrid systems of differential equations.
@article{MAIS_2015_22_2_a3,
     author = {D. A. Eliseev and E. P. Kubyshkin},
     title = {Solutions stability of initial boundary problem, modeling of dynamics of~some discrete continuum mechanical system},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {197--208},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2015_22_2_a3/}
}
TY  - JOUR
AU  - D. A. Eliseev
AU  - E. P. Kubyshkin
TI  - Solutions stability of initial boundary problem, modeling of dynamics of~some discrete continuum mechanical system
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2015
SP  - 197
EP  - 208
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2015_22_2_a3/
LA  - ru
ID  - MAIS_2015_22_2_a3
ER  - 
%0 Journal Article
%A D. A. Eliseev
%A E. P. Kubyshkin
%T Solutions stability of initial boundary problem, modeling of dynamics of~some discrete continuum mechanical system
%J Modelirovanie i analiz informacionnyh sistem
%D 2015
%P 197-208
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2015_22_2_a3/
%G ru
%F MAIS_2015_22_2_a3
D. A. Eliseev; E. P. Kubyshkin. Solutions stability of initial boundary problem, modeling of dynamics of~some discrete continuum mechanical system. Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 2, pp. 197-208. http://geodesic.mathdoc.fr/item/MAIS_2015_22_2_a3/

[1] Eliseev D. A., Kubyshkin E. P., “Motion Equations of a Rigid Body with Two Elastic Rods”, Automatic Control and Computer Sciences, 48:7 (2014), 516–520 | DOI | MR

[2] Zlochevskiy S. I., Kubyshkin E. P., “O stabilizatsii sputnika s gibkimi sterzhnyami”, Kosmich. issled., 27:5 (1989), 643 (in Russian)

[3] Zlochevskiy S. I., Kubyshkin E. P., “O stabilizatsii sputnika s gibkimi sterzhnyami, II”, Kosmich. issled., 29:6 (1991), 828 (in Russian)

[4] Berbyuk V. E., Dinamika i optimizatsiya robototekhnicheskikh sistem, Naukova dumka, Kiev, 1989 (in Russian)

[5] Chernousko F. L., Bolotnik N. N., Gradetsky V. G., Manipulation Robots: Dynamics, Control and Optimization, CRC Press, Boca Raton, 1994 | MR

[6] Kubyshkin Ye. P., “Optimal control of the rotation of a solid with a flexible rod”, Journal of Applied Mathematics and Mechanics, 56:2 (1992), 205–214 | DOI | MR | Zbl

[7] Krabs W., Chi-Long N., “On the Controllability of a Robot Arm”, Mathematical Methods in the Applied Sciences, 21 (1998), 25–42 | 3.0.CO;2-B class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[8] Krabs W., “Controllability of a Rotating Beam”, Lecture Notes in Control and Information Sciences, 185, 1993, 447–458 | MR | Zbl

[9] Leugering G., “On control and stabilization of a rotating beam by applying moments at the base only”, Lecture Notes in Control and Information Sciences, 149, 1991, 182–191 | MR | Zbl

[10] Gugat M., “Controllability of a slowly rotating Timoshenko beam”, ESAIM: Control, Optimisation and Calculus of Variations, 6 (2001), 333–360 | DOI | MR | Zbl

[11] Krabs W., Sklyar G. M., “On the controllability of a slowly rotating Timoshenko beam”, Z. Anal Anwend., 18:2 (1999), 437–448 | MR | Zbl

[12] Krabs W., Sklyar G. M., “On the stabilizability of a slowly rotating Timoshenko beam”, Z. Anal Anwend., 19:1 (2000), 131–145 | DOI | MR | Zbl

[13] Krabs W., Sklyar G. M., Wozniak J., “On the set of reachable states in the problem of controllability of rotating Timoshenko beam”, J. Anal Appl., 22:1 (2003), 215–228 | MR | Zbl

[14] Taylor S., Yau S., “Boundary control of a rotating Timoshenko beam”, ANZIAM J. E, 44:1 (2003), 143–184

[15] Kubyshkin E. P., Khrebtyugova O. A., “A Generalized Solution of an Initial Boundary Value Problem Arising in the Mechanics of Discrete–Continuous Systems”, Automatic Control and Computer Sciences, 47:7 (2013), 556–565 | DOI

[16] Aoustin Y., Formalsky A., “On the Synthesis of a nominal Trajectory for Control Law of a one-Link flexible Arm”, The lnternational Joumal of Robotics Research, 16:1 (1997), 36–46 | DOI | MR

[17] Frolov K. V. i dr., Vibratsii v tekhnike, Spravochnik v 6 tomakh, v. 1, Mashinostroenie, M., 1978 (in Russian)

[18] Bellman R., Cooke K., Differential-Difference Equations, Academic Press, 1963 | MR | MR | Zbl