Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2015_22_2_a11, author = {S. V. Aleshin and S. D. Glyzin and S. A. Kaschenko}, title = {Fisher--Kolmogorov--Petrovskii--Piscounov equation with delay}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {304--321}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2015_22_2_a11/} }
TY - JOUR AU - S. V. Aleshin AU - S. D. Glyzin AU - S. A. Kaschenko TI - Fisher--Kolmogorov--Petrovskii--Piscounov equation with delay JO - Modelirovanie i analiz informacionnyh sistem PY - 2015 SP - 304 EP - 321 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2015_22_2_a11/ LA - ru ID - MAIS_2015_22_2_a11 ER -
%0 Journal Article %A S. V. Aleshin %A S. D. Glyzin %A S. A. Kaschenko %T Fisher--Kolmogorov--Petrovskii--Piscounov equation with delay %J Modelirovanie i analiz informacionnyh sistem %D 2015 %P 304-321 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2015_22_2_a11/ %G ru %F MAIS_2015_22_2_a11
S. V. Aleshin; S. D. Glyzin; S. A. Kaschenko. Fisher--Kolmogorov--Petrovskii--Piscounov equation with delay. Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 2, pp. 304-321. http://geodesic.mathdoc.fr/item/MAIS_2015_22_2_a11/
[1] Kolmogorov A., Petrovsky I., Piscounov N., “Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique”, Moscou Univ. Bull. Math., 1 (1937), 1–25 | Zbl
[2] Fisher R. A., “The Wave of Advance of Advantageous Genes”, Annals of Eugenics, 7 (1937), 355–369 | DOI | Zbl
[3] Murray J. D., Mathematical Biology, v. I, An Introduction, Third Edition, Berlin, 2001
[4] Danilov V. G., Maslov V. P., Volosov K. A., Mathematical Modelling of Heat and Mass Transfer Processes, Kluwer, Dordrecht, 1995 | MR | Zbl
[5] Volpert A., Volpert V., Volpert V., Traveling Wave Solutions of Parabolic Systems, American Mathematical Society, 2000
[6] Ablowitz M. J., Zeppetella A., “Explicit solutions of Fisher’s equation for a special wave speed”, Bull. Math. Biology, 41 (1979), 835–840 | DOI | MR | Zbl
[7] Kudryashov N. A., “On exact solutions of families of Fisher equations”, Theoretical and Mathematical Physics, 94:2 (1993), 211–218 | DOI | MR | Zbl
[8] Kakutani S., Markus L., “On the non-linear difference-differential equation $y'(t)=(a-by(t-\tau))y(t)$ contributions to the theory of non-linear oscillations”, Ann. Math. Stud., IV, Princenton University Press, Princenton, 1958, 1–18 | MR
[9] Kuang Y., Delay Differential Equations. With Applications in Population Dynamics, Academic Press, 1993 | MR | Zbl
[10] Wright E. M., “A non-linear differential equation”, J. Reine Angew. Math., 194:1–4 (1955), 66–87 | MR | Zbl
[11] Kashchenko S. A., “Asymptotics of periodical solution of Hutchinson generalized equation”, Issledovaniya po ustoichivosti i teorii kolebanii (Studies of Stability and Theory of Oscillations), YarGU, Yaroslavl, 1981, 64–85 (in Russian)
[12] Jones G. S., “The existence of periodic solutions of $f(x)=-\alpha f(x-1)[1+f(x)]$”, J. Math. Anal. and Appl., 5 (1962), 435–450 | DOI | MR | Zbl
[13] Kashchenko S. A., “K voprosu ob otsenke v prostranstve parametrov oblasti global'noy ustoychivosti uravneniya Hutchinsona”, Nelineynyye kolebaniya v zadachakh ekologii, YarGU, Yaroslavl, 1985, 55–62 (in Russian)
[14] Kolesov A. Yu., “Ob ustojchivosti prostranstvenno odnorodnogo cikla v uravnenii Hatchinsona s diffuziej”, Matematicheskie modeli v biologii i medicine, 1 (1985), 93–103 (in Russian) | MR
[15] Kashchenko S. A., “Ob ustanovivshihsja rezhimah uravnenija Hatchinsona s diffuziej”, DAN SSSR, 292:2 (1987), 327–330 (in Russian) | MR
[16] Kashchenko S. A., “Spatial heterogeneous structures in the simplest models with delay and diffusion”, Matem. mod., 2:9 (1990), 49–69 (in Russian) | MR
[17] Kashchenko S. A., “Asymptotics of the Solutions of the Generalized Hutchinson Equation”, Automatic Control and Computer Science, 47:7 (2013), 470–494 | DOI
[18] Glyzin S. D., “Difference approximations of “reaction-diffusion” equation on a segment”, Modeling and Analysis of Information Systems, 16:3 (2009), 96–116 (in Russian)
[19] Wu J., Theory and Applications of Partial Functional Differential Equations Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, New York, 1996 | MR | Zbl
[20] Kashchenko A. A., “Analysis of Running Waves Stability in the Ginzburg–Landau Equation with Small Diffusion”, Modeling and Analysis of Information Systems, 18:3 (2011), 58–62 (in Russian)
[21] Glyzin S. D., “Dimensional Characteristics of Diffusion Chaos”, Automatic Control and Computer Sciences, 47:7 (2013), 452–469 | DOI | MR
[22] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Finite-dimensional models of diffusion chaos”, Computational Mathematics and Mathematical Physics, 50:5 (2010), 816–830 | DOI | MR | Zbl