Fisher--Kolmogorov--Petrovskii--Piscounov equation with delay
Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 2, pp. 304-321.

Voir la notice de l'article provenant de la source Math-Net.Ru

We considered the problem of density wave propagation in a logistic equation with delay and diffusion (Fisher–Kolmogorov equation with delay). It was constructed a Ginzburg–Landau equation in order to study the qualitative behavior of the solution near the equilibrium state. The numerical analysis of wave propagation shows that for a sufficiently small delay this equation has a solution similar to the solution of a classical Fisher–Kolmogorov equation. The delay increasing leads to existence of the oscillatory component in spatial distribution of solutions. A further increase of delay leads to the destruction of the traveling wave. That is expressed in the fact that undamped spatio-temporal fluctuations exist in a neighborhood of the initial perturbation. These fluctuations are close to the solution of the corresponding boundary value problem with periodic boundary conditions. Finally, when the delay is sufficiently large we observe intensive spatio-temporal fluctuations in the whole area of wave propagation.
Keywords: attractor, Fisher–Kolmogorov equation, Ginzburg–Landau equation.
Mots-clés : bifurcation
@article{MAIS_2015_22_2_a11,
     author = {S. V. Aleshin and S. D. Glyzin and S. A. Kaschenko},
     title = {Fisher--Kolmogorov--Petrovskii--Piscounov equation with delay},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {304--321},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2015_22_2_a11/}
}
TY  - JOUR
AU  - S. V. Aleshin
AU  - S. D. Glyzin
AU  - S. A. Kaschenko
TI  - Fisher--Kolmogorov--Petrovskii--Piscounov equation with delay
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2015
SP  - 304
EP  - 321
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2015_22_2_a11/
LA  - ru
ID  - MAIS_2015_22_2_a11
ER  - 
%0 Journal Article
%A S. V. Aleshin
%A S. D. Glyzin
%A S. A. Kaschenko
%T Fisher--Kolmogorov--Petrovskii--Piscounov equation with delay
%J Modelirovanie i analiz informacionnyh sistem
%D 2015
%P 304-321
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2015_22_2_a11/
%G ru
%F MAIS_2015_22_2_a11
S. V. Aleshin; S. D. Glyzin; S. A. Kaschenko. Fisher--Kolmogorov--Petrovskii--Piscounov equation with delay. Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 2, pp. 304-321. http://geodesic.mathdoc.fr/item/MAIS_2015_22_2_a11/

[1] Kolmogorov A., Petrovsky I., Piscounov N., “Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique”, Moscou Univ. Bull. Math., 1 (1937), 1–25 | Zbl

[2] Fisher R. A., “The Wave of Advance of Advantageous Genes”, Annals of Eugenics, 7 (1937), 355–369 | DOI | Zbl

[3] Murray J. D., Mathematical Biology, v. I, An Introduction, Third Edition, Berlin, 2001

[4] Danilov V. G., Maslov V. P., Volosov K. A., Mathematical Modelling of Heat and Mass Transfer Processes, Kluwer, Dordrecht, 1995 | MR | Zbl

[5] Volpert A., Volpert V., Volpert V., Traveling Wave Solutions of Parabolic Systems, American Mathematical Society, 2000

[6] Ablowitz M. J., Zeppetella A., “Explicit solutions of Fisher’s equation for a special wave speed”, Bull. Math. Biology, 41 (1979), 835–840 | DOI | MR | Zbl

[7] Kudryashov N. A., “On exact solutions of families of Fisher equations”, Theoretical and Mathematical Physics, 94:2 (1993), 211–218 | DOI | MR | Zbl

[8] Kakutani S., Markus L., “On the non-linear difference-differential equation $y'(t)=(a-by(t-\tau))y(t)$ contributions to the theory of non-linear oscillations”, Ann. Math. Stud., IV, Princenton University Press, Princenton, 1958, 1–18 | MR

[9] Kuang Y., Delay Differential Equations. With Applications in Population Dynamics, Academic Press, 1993 | MR | Zbl

[10] Wright E. M., “A non-linear differential equation”, J. Reine Angew. Math., 194:1–4 (1955), 66–87 | MR | Zbl

[11] Kashchenko S. A., “Asymptotics of periodical solution of Hutchinson generalized equation”, Issledovaniya po ustoichivosti i teorii kolebanii (Studies of Stability and Theory of Oscillations), YarGU, Yaroslavl, 1981, 64–85 (in Russian)

[12] Jones G. S., “The existence of periodic solutions of $f(x)=-\alpha f(x-1)[1+f(x)]$”, J. Math. Anal. and Appl., 5 (1962), 435–450 | DOI | MR | Zbl

[13] Kashchenko S. A., “K voprosu ob otsenke v prostranstve parametrov oblasti global'noy ustoychivosti uravneniya Hutchinsona”, Nelineynyye kolebaniya v zadachakh ekologii, YarGU, Yaroslavl, 1985, 55–62 (in Russian)

[14] Kolesov A. Yu., “Ob ustojchivosti prostranstvenno odnorodnogo cikla v uravnenii Hatchinsona s diffuziej”, Matematicheskie modeli v biologii i medicine, 1 (1985), 93–103 (in Russian) | MR

[15] Kashchenko S. A., “Ob ustanovivshihsja rezhimah uravnenija Hatchinsona s diffuziej”, DAN SSSR, 292:2 (1987), 327–330 (in Russian) | MR

[16] Kashchenko S. A., “Spatial heterogeneous structures in the simplest models with delay and diffusion”, Matem. mod., 2:9 (1990), 49–69 (in Russian) | MR

[17] Kashchenko S. A., “Asymptotics of the Solutions of the Generalized Hutchinson Equation”, Automatic Control and Computer Science, 47:7 (2013), 470–494 | DOI

[18] Glyzin S. D., “Difference approximations of “reaction-diffusion” equation on a segment”, Modeling and Analysis of Information Systems, 16:3 (2009), 96–116 (in Russian)

[19] Wu J., Theory and Applications of Partial Functional Differential Equations Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, New York, 1996 | MR | Zbl

[20] Kashchenko A. A., “Analysis of Running Waves Stability in the Ginzburg–Landau Equation with Small Diffusion”, Modeling and Analysis of Information Systems, 18:3 (2011), 58–62 (in Russian)

[21] Glyzin S. D., “Dimensional Characteristics of Diffusion Chaos”, Automatic Control and Computer Sciences, 47:7 (2013), 452–469 | DOI | MR

[22] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Finite-dimensional models of diffusion chaos”, Computational Mathematics and Mathematical Physics, 50:5 (2010), 816–830 | DOI | MR | Zbl