Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2015_22_2_a10, author = {A. V. Shutov and E. V. Kolomeykina}, title = {The estimating of the number of lattice tilings of a plane by a given area centrosymmetrical polyomino}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {295--303}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2015_22_2_a10/} }
TY - JOUR AU - A. V. Shutov AU - E. V. Kolomeykina TI - The estimating of the number of lattice tilings of a plane by a given area centrosymmetrical polyomino JO - Modelirovanie i analiz informacionnyh sistem PY - 2015 SP - 295 EP - 303 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2015_22_2_a10/ LA - ru ID - MAIS_2015_22_2_a10 ER -
%0 Journal Article %A A. V. Shutov %A E. V. Kolomeykina %T The estimating of the number of lattice tilings of a plane by a given area centrosymmetrical polyomino %J Modelirovanie i analiz informacionnyh sistem %D 2015 %P 295-303 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2015_22_2_a10/ %G ru %F MAIS_2015_22_2_a10
A. V. Shutov; E. V. Kolomeykina. The estimating of the number of lattice tilings of a plane by a given area centrosymmetrical polyomino. Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 2, pp. 295-303. http://geodesic.mathdoc.fr/item/MAIS_2015_22_2_a10/
[1] Golomb S. W., “Checkerboards and polyominoes”, Amer. Math. Monthly, 61 (1954), 672–682 | MR
[2] Guttman A. J., Polygons, polyominoes and polycubes, Springer, 2009 | MR | Zbl
[3] Gardner M., Time Travel and Other Mathematical Bewilderments, W. H. Freeman, New York, 1988 | MR | MR | Zbl
[4] Golomb S. W., “Tiling with sets of polyominoes”, Journal of Combinatorial Theory, 9 (1970), 60–71 | DOI | MR | Zbl
[5] Ammann R., Grunbaum B., Shephard G., “Aperiodic tiles”, Discrete and Computational Geometry, 1991, no. 6, 1–25 | MR
[6] Brlek S., Provencal X., Fedou J.-M., “On the tiling by translation problem”, Discrete Applied Mathematics, 157 (2009), 464–475 | DOI | MR | Zbl
[7] Wijshoff H. A. G., van Leeuwen J., “Arbitrary versus Periodic Storage Schemes and Tesselations of the Plane Using One Type of Polyomino”, Information and control, 62 (1984), 1–25 | DOI | MR | Zbl
[8] Rhoads G. C., “Planar tilings by polyominoes, polyhexes, and polyiamonds”, Journal of Computational and Applied Mathematics, 174 (2005), 329–353 | DOI | MR | Zbl
[9] Myers J., Polyomino, polyhex and polyiamond tiling, http://www.srcf.ucam.org/ ̃ jsm28/tiling/
[10] Golomb S. W., Polyominoes, 1975
[11] Fukuda H., Mutoh N., Nakamura G., Schattschneider D., “A Method to Generate Polyominoes and Polyiamonds for Tilings with Rotational Symmetry”, Graphs and Combinatorics, 23:1, June (2007), 259–267 | DOI | MR | Zbl
[12] Fukuda H., Mutoh N., Nakamura G., Schattschneider D., “Enumeration of Polyominoes, Polyiamonds and Polyhexes for Isohedral Tilings with Rotational Symmetry”, Computational Geometry and Graph Theory, Lecture Notes in Computer Science, 4535, 2008, 68–78 | MR | Zbl
[13] Fukuda H., Kanomata Ch., Mutoh N., Nakamura G., Schattschneider D., “Polyominoes and Polyiamonds as Fundamental Domains of Isohedral Tilings with Rotational Symmetry”, Symmetry, 3:4 (2011), 828 | DOI | MR
[14] Horiyama T., Samejima M., “Enumeration of Polyominoes for p4 Tiling”, Proceedings of the 21st Annual Canadian Conference on Computational Geometry (Vancouver, British Columbia, Canada, August 17–19, 2009), 29–32; IEICE Tech. Rep., 109:54 (2009), COMP2009-17, 51–55
[15] Maleev A. V., “Algorithm and Computer-program Search for Variants of Polyomino Packings in Plane”, Crystallography reports, 58:5 (2013), 760–767 | DOI | DOI
[16] Maleev A. V., Shutov A. V., “O chisle translyatsionnykh razbieniy ploskosti na polimino”, Matematicheskie issledovaniya v estestvennykh naukakh, Trudy IX Vserossiyskoy nauchnoy shkoly, K M, Apatity, 2013, 101–106 (in Russian)
[17] Brlek S., Frosini A., Rinaldi S., Vuillon L., “Tilings by translation: enumeration by a rational language approach”, The electronic journal of combinatorics, 13 (2006), R15 | MR | Zbl
[18] Beauquier D., Nivat M., “On Translating One Polyomino To Tile the Plane”, Discrete Comput. Geom., 6 (1991), 575–-592 | DOI | MR | Zbl
[19] Shutov A. V., Kolomeykina E. V., “The Estimation of the Number of Lattice Tilings of a Plane by a Given Area Polyomino”, Modeling and analysis of information systems, 20:5 (2013), 148–157 (in Russian)
[20] Gambini I., Vuillon L., “An algorothm for deciding if a polyomino tiles the plane by translations”, Theoretical Informatics and Applications, 41:2 (2007), 147–155 | MR | Zbl
[21] Bauerschmidt R., Duminil-Copin H., Goodman J., Slade G., “Lectures on self-avoiding walks”, Probability and Statistical Physics in Two and More Dimensions, Clay Mathematics Proceedings, 15, Amer. Math. Soc., 2010, 395–476 | MR