Residual properties of nilpotent groups
Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 2, pp. 149-157.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\pi $ be a set of primes. Recall that a group $G$ is said to be a residually finite $\pi $-group if for every nonidentity element $a$ of $G$ there exists a homomorphism of the group $G$ onto some finite $\pi $-group such that the image of the element $a$ differs from 1. A group $G$ will be said to be a virtually residually finite $\pi $-group if it contains a finite index subgroup which is a residually finite $\pi $-group. Recall that an element $g$ in $G$ is said to be $\pi $-radicable if $g$ is an $m$-th power of an element of $G$ for every positive $\pi $-number $m$. Let $N$ be a nilpotent group and let all power subgroups in $N$ are finitely separable. It is proved that $N$ is a residually finite $\pi $-group if and only if $N$ has no nonidentity $\pi $-radicable elements. Suppose now that $\pi $ does not coincide with the set $\Pi $ of all primes. Let $\pi '$ be the complement of $\pi $ in the set $\Pi $. And let $T$ be a $\pi '$ component of $N$ i.e. $T$ be a set of all elements of $N$ whose orders are finite $\pi '$-numbers. We prove that the following three statements are equivalent: (1) the group $N$ is a virtually residually finite $\pi $-group; (2) the subgroup $T$ is finite and quotient group $N/T$ is a residually finite $\pi $-group; (3) the subgroup $T$ is finite and $T$ coincides with the set of all $\pi $-radicable elements of $N$.
Keywords: nilpotent group, finite rank group, residually finite $p$-group.
@article{MAIS_2015_22_2_a0,
     author = {D. N. Azarov},
     title = {Residual properties of nilpotent groups},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {149--157},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2015_22_2_a0/}
}
TY  - JOUR
AU  - D. N. Azarov
TI  - Residual properties of nilpotent groups
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2015
SP  - 149
EP  - 157
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2015_22_2_a0/
LA  - ru
ID  - MAIS_2015_22_2_a0
ER  - 
%0 Journal Article
%A D. N. Azarov
%T Residual properties of nilpotent groups
%J Modelirovanie i analiz informacionnyh sistem
%D 2015
%P 149-157
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2015_22_2_a0/
%G ru
%F MAIS_2015_22_2_a0
D. N. Azarov. Residual properties of nilpotent groups. Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 2, pp. 149-157. http://geodesic.mathdoc.fr/item/MAIS_2015_22_2_a0/

[1] Malcev A. I., “Obobshchyonno nilpotentnye algebry i ikh prisoedinyonnye gruppy”, Mat. sb., 25:3 (1949), 347–366 (in Russian) | Zbl

[2] Chandler B., Magnus W., The history of combinatorial group theory, Springer, 1982 | MR | Zbl

[3] Malcev A. I., “Ob izomorfnom predstavlenii beskonechnykh grupp matritsami”, Mat. sb., 8:3 (1940), 405–422 (in Russian) | MR | Zbl

[4] Hirsh K. A., “On infinite soluble groups”, J. London Math. Soc., 27 (1952), 81–85 | MR

[5] Learner A., “Residual properties of polycyclic groups”, J. Math., 8 (1964), 536–542 | MR | Zbl

[6] Seksenbaev K., “K teorii policiklicheskih grupp”, Algebra i logika, 4:3 (1965), 79–83 (in Russian) | MR | Zbl

[7] Smelkin A. L., “Politsiklicheskie gruppy”, Sib. mat. zh., 9 (1968), 234–235 (in Russian)

[8] Gruenberg K. W., “Residual properties of infinite soluble groups”, Proc. London Math. Soc. (3), 7:25 (1957), 29–62 | MR | Zbl

[9] Malcev A. I., “O gomomorfizmah na konechnye gruppy”, Uchen. zap. Ivan. gos. ped. in-ta, 18, no. 5, 1958, 49–60 (in Russian)

[10] Azarov D. N., “Some Residual Properties of Finite Rank Groups”, Modeling and Analysis of Information Systems, 21:2 (2014), 50–55 (in Russian)

[11] Malcev A. I., “O gruppah konechnogo ranga”, Mat. sb., 22:2 (1948), 351–352 (in Russian) | Zbl

[12] Azarov D. N., “Approximability of finite rank soluble groups by certain classes of finite groups”, Mathematics (Iz. VUZ), 58:8 (2014), 15–23 | MR | Zbl

[13] Lennox J., Wiegold C., “Converse of theorem of Mal'cev on nilpotent groups”, Math. Z., 139:1 (1974), 85–86 | DOI | MR | Zbl

[14] Rozov A. V., “O nilpotentnykh gruppakh konechnogo ranga”, Matematika i ee prilozheniya. Zhurn. Ivan. Mat. Obshch., 2012, no. 1(9), 41 (in Russian) | Zbl

[15] Azarov D. N. Vaskova I. G., “O finitnoy approksimiruemosti nilpotentnykh grupp”, Uchen. tr. IvGU. Matematika, 6 (2008), 9–16 (in Russian)

[16] Lennox J., Robinson D., The theory of infinite soluble groups, Clarendon press, Oxford, 2004 | MR | Zbl

[17] Lubotzki A., Mann A., “Residually finite groups of finite rank”, Math. Proc. Comb. Phil. Soc., 106:3 (1989), 385–388 | DOI | MR

[18] Azarov D. N., “Nekotorye approksimatsionnye svoystva razreshimykh grupp konechnogo ranga”, Chebyshevskiy sbornik, 15:1(49) (2014), 7–18 (in Russian) | MR

[19] Azarov D. N., “O pochti approksimiruemosti konechnymi $p$-gruppami nekotorykh razreshimykh grupp konechnogo ranga”, Vest. Ivan. gos. un-ta, 2 (2011), 80–85 (in Russian)

[20] Azarov D. N., “Ob approksimiruemosti konechnymi $p$-gruppami grupp konechnogo ranga”, Vest. Ivan. gos. un-ta, 3 (2001), 103–105 (in Russian)