Residual properties of nilpotent groups
Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 2, pp. 149-157

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\pi $ be a set of primes. Recall that a group $G$ is said to be a residually finite $\pi $-group if for every nonidentity element $a$ of $G$ there exists a homomorphism of the group $G$ onto some finite $\pi $-group such that the image of the element $a$ differs from 1. A group $G$ will be said to be a virtually residually finite $\pi $-group if it contains a finite index subgroup which is a residually finite $\pi $-group. Recall that an element $g$ in $G$ is said to be $\pi $-radicable if $g$ is an $m$-th power of an element of $G$ for every positive $\pi $-number $m$. Let $N$ be a nilpotent group and let all power subgroups in $N$ are finitely separable. It is proved that $N$ is a residually finite $\pi $-group if and only if $N$ has no nonidentity $\pi $-radicable elements. Suppose now that $\pi $ does not coincide with the set $\Pi $ of all primes. Let $\pi '$ be the complement of $\pi $ in the set $\Pi $. And let $T$ be a $\pi '$ component of $N$ i.e. $T$ be a set of all elements of $N$ whose orders are finite $\pi '$-numbers. We prove that the following three statements are equivalent: (1) the group $N$ is a virtually residually finite $\pi $-group; (2) the subgroup $T$ is finite and quotient group $N/T$ is a residually finite $\pi $-group; (3) the subgroup $T$ is finite and $T$ coincides with the set of all $\pi $-radicable elements of $N$.
Keywords: nilpotent group, finite rank group, residually finite $p$-group.
@article{MAIS_2015_22_2_a0,
     author = {D. N. Azarov},
     title = {Residual properties of nilpotent groups},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {149--157},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2015_22_2_a0/}
}
TY  - JOUR
AU  - D. N. Azarov
TI  - Residual properties of nilpotent groups
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2015
SP  - 149
EP  - 157
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2015_22_2_a0/
LA  - ru
ID  - MAIS_2015_22_2_a0
ER  - 
%0 Journal Article
%A D. N. Azarov
%T Residual properties of nilpotent groups
%J Modelirovanie i analiz informacionnyh sistem
%D 2015
%P 149-157
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2015_22_2_a0/
%G ru
%F MAIS_2015_22_2_a0
D. N. Azarov. Residual properties of nilpotent groups. Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 2, pp. 149-157. http://geodesic.mathdoc.fr/item/MAIS_2015_22_2_a0/