On the approximation of periodic functions in $L_2$ and the values of the widths of certain classes of functions
Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 1, pp. 127-143

Voir la notice de l'article provenant de la source Math-Net.Ru

The sharp Jackson–Stechkin inequalities are received, in which a special module of continuity $\widetilde{\Omega}_{m}(f; t)$ determined by Steklov's function is used instead the usual modulus of continuity of $m$th order $\omega_{m}(f; t)$. Such generalized modulus of continuity of $m$th order were introduced by V. A. Abilov and F. V. Abilova. The introduced modulus of continuity found their application in the theory of polynomial approximation in Hilbert space in the works by M. Sh. Shabozov and G. A. Yusupov, S. B. Vakarchuk and V. I. Zabutnaya and others. While continuing and developing these direction for some classes of functions defined by modulus of continuity, the new values of $n$-widths in the Hilbert space $L_{2}$ were found.
Keywords: best polynomial approximation, Steklov operator, modulus of continuity, generalized modulus of continuity, $n$-widths.
@article{MAIS_2015_22_1_a8,
     author = {K. Tukhliev},
     title = {On the approximation of periodic functions in $L_2$ and the values of the widths of certain classes of functions},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {127--143},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2015_22_1_a8/}
}
TY  - JOUR
AU  - K. Tukhliev
TI  - On the approximation of periodic functions in $L_2$ and the values of the widths of certain classes of functions
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2015
SP  - 127
EP  - 143
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2015_22_1_a8/
LA  - ru
ID  - MAIS_2015_22_1_a8
ER  - 
%0 Journal Article
%A K. Tukhliev
%T On the approximation of periodic functions in $L_2$ and the values of the widths of certain classes of functions
%J Modelirovanie i analiz informacionnyh sistem
%D 2015
%P 127-143
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2015_22_1_a8/
%G ru
%F MAIS_2015_22_1_a8
K. Tukhliev. On the approximation of periodic functions in $L_2$ and the values of the widths of certain classes of functions. Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 1, pp. 127-143. http://geodesic.mathdoc.fr/item/MAIS_2015_22_1_a8/