Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2015_22_1_a8, author = {K. Tukhliev}, title = {On the approximation of periodic functions in $L_2$ and the values of the widths of certain classes of functions}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {127--143}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2015_22_1_a8/} }
TY - JOUR AU - K. Tukhliev TI - On the approximation of periodic functions in $L_2$ and the values of the widths of certain classes of functions JO - Modelirovanie i analiz informacionnyh sistem PY - 2015 SP - 127 EP - 143 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2015_22_1_a8/ LA - ru ID - MAIS_2015_22_1_a8 ER -
%0 Journal Article %A K. Tukhliev %T On the approximation of periodic functions in $L_2$ and the values of the widths of certain classes of functions %J Modelirovanie i analiz informacionnyh sistem %D 2015 %P 127-143 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2015_22_1_a8/ %G ru %F MAIS_2015_22_1_a8
K. Tukhliev. On the approximation of periodic functions in $L_2$ and the values of the widths of certain classes of functions. Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 1, pp. 127-143. http://geodesic.mathdoc.fr/item/MAIS_2015_22_1_a8/
[1] N. I. Chernykh, “On the best $L_2$-approximation of periodic function by trigonometric polynomials”, Math. Notes, 2:5 (1967), 803–808 | DOI
[2] L. V. Taikov, “Inequalities containing best approximations, and the modulus of continuity of functions in $L_2$”, Math. Notes, 20:3 (1976), 797–800 | DOI
[3] V. A. Yudin, “Diophantine approximations in $L_2$ extremal problems”, Dokl. Akad. Nauk SSSR, 251:1 (1980), 54–57
[4] A. G. Babenko, “The exact constant in the Jackson inequality in $L^2$”, Math. Notes, 39:5 (1986), 355–363 | DOI
[5] A. A. Ligun, “Exact Jackson type inequalities for periodic functions in the spaces $L_2$”, Math. Notes, 43:6 (1988), 435–443 | DOI
[6] Ivanov V. I., Smirnov O. I., Konstanty Dzheksona i konstanty Junga v prostranstvah $L_p$, Tulskiy gosudarstvennyj universitet, Tula, 1995 (in Russian)
[7] A. G. Babenko, N. I. Chernykh, V. T. Shevaldin, “The Jackson–Stechkin inequality in $L_2$ with a trigonometric modulus of continuity”, Math. Notes, 65:6 (1999), 777–781 | DOI | DOI
[8] S. B. Vakarchuk, “$\mathcal{K}$-functionals and exact values of $n$-widths of some classes in $L_2$”, Math. Notes, 66:4 (1999), 404–408 | DOI | DOI
[9] M. G. Esmaganbetov, “Widths of classes from $L_{2}[0,2\pi]$ and the minimization of exact constants in Jackson-type inequalities”, Math. Notes, 65:6 (1999), 689–693 | DOI | DOI
[10] V. A. Abilov, F. V. Abilova, “Problems in the approximation of $2\pi$-periodic functions by Fourier sums in the space $L_{2}(2\pi)$”, Math. Notes, 76:6 (2004), 749–757 | DOI | DOI
[11] S. B. Vakarchuk, “Exact constants in Jackson-type inequalities and exact values of widths”, Math. Notes, 78:5 (2005), 735–739 | DOI | DOI
[12] M. Sh. Shabozov, “Widths of classes periodical differentiable functions in $L_2[0,2\pi]$”, Math. Notes, 87:4 (2010), 575–581 | DOI | DOI
[13] M. Sh. Shabozov, “The exact constants in the inequality of Jackson type and the exact value of $n$-widths of some classes functions from $L_2$”, News of the Academy of Sciences of the Republic of Tajikistan. Department of physical, mathematical, chemical, geological and technical sciences, 2010, no. 4(141), 7–24
[14] M. Sh. Shabozov, G. A. Yusupov, “Best polynomial approximation in $L_2$ of classes of $2\pi$-periodic functions and exact values of their widths”, Math. Notes, 90:5 (2011), 748–757 | DOI | DOI
[15] M. Sh. Shabozov, G. A. Yusupov, “Exact constants in Jackson-type inequalities and exact values of the widths of some classes of functions in $L_2$”, Siberian Mathematical Journal, 52:6 (2011), 1124–1136 | DOI
[16] M. Sh. Shabozov, G. A. Yusupov, “Widths of Certain Classes of Periodic Functions in $L_2$”, Journal of Approximation Theory, 164:1 (2012), 869–878 | DOI
[17] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenij, Moskovskij gosudarstvennyj universitet, M., 1976 (in Russian)
[18] A. Pinkus, $n$-Widths in Approximation Theory, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1985
[19] S. B. Vakarchuk, V. I. Zabutnaya, “Jackson–Stechkin type inequalities for special moduli of continuity and widths of function classes in the space $L_2$”, Math. Notes, 92:4 (2012), 458–472 | DOI | DOI
[20] M. Sh. Shabozov, K. Tukhliev, “The best polynomial approximation and the widths of some functional classes in $L_2$”, Math. Notes, 94:6 (2013), 930–937 | DOI | DOI
[21] K. V. Runovskiĭ, “On approximation by families of linear polynomial operators in $L_{p}$-spaces, $0
1$”, Russian Acad. Sci. Sb. Math., 82:2 (1995), 441–459[22] Dzyadik V. K., Vvedenie v teoriyu ravnomernogo priblizheniya, Nauka, M., 1977 (in Russian)