On the approximation of periodic functions in $L_2$ and the values of the widths of certain classes of functions
Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 1, pp. 127-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

The sharp Jackson–Stechkin inequalities are received, in which a special module of continuity $\widetilde{\Omega}_{m}(f; t)$ determined by Steklov's function is used instead the usual modulus of continuity of $m$th order $\omega_{m}(f; t)$. Such generalized modulus of continuity of $m$th order were introduced by V. A. Abilov and F. V. Abilova. The introduced modulus of continuity found their application in the theory of polynomial approximation in Hilbert space in the works by M. Sh. Shabozov and G. A. Yusupov, S. B. Vakarchuk and V. I. Zabutnaya and others. While continuing and developing these direction for some classes of functions defined by modulus of continuity, the new values of $n$-widths in the Hilbert space $L_{2}$ were found.
Keywords: best polynomial approximation, Steklov operator, modulus of continuity, generalized modulus of continuity, $n$-widths.
@article{MAIS_2015_22_1_a8,
     author = {K. Tukhliev},
     title = {On the approximation of periodic functions in $L_2$ and the values of the widths of certain classes of functions},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {127--143},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2015_22_1_a8/}
}
TY  - JOUR
AU  - K. Tukhliev
TI  - On the approximation of periodic functions in $L_2$ and the values of the widths of certain classes of functions
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2015
SP  - 127
EP  - 143
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2015_22_1_a8/
LA  - ru
ID  - MAIS_2015_22_1_a8
ER  - 
%0 Journal Article
%A K. Tukhliev
%T On the approximation of periodic functions in $L_2$ and the values of the widths of certain classes of functions
%J Modelirovanie i analiz informacionnyh sistem
%D 2015
%P 127-143
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2015_22_1_a8/
%G ru
%F MAIS_2015_22_1_a8
K. Tukhliev. On the approximation of periodic functions in $L_2$ and the values of the widths of certain classes of functions. Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 1, pp. 127-143. http://geodesic.mathdoc.fr/item/MAIS_2015_22_1_a8/

[1] N. I. Chernykh, “On the best $L_2$-approximation of periodic function by trigonometric polynomials”, Math. Notes, 2:5 (1967), 803–808 | DOI

[2] L. V. Taikov, “Inequalities containing best approximations, and the modulus of continuity of functions in $L_2$”, Math. Notes, 20:3 (1976), 797–800 | DOI

[3] V. A. Yudin, “Diophantine approximations in $L_2$ extremal problems”, Dokl. Akad. Nauk SSSR, 251:1 (1980), 54–57

[4] A. G. Babenko, “The exact constant in the Jackson inequality in $L^2$”, Math. Notes, 39:5 (1986), 355–363 | DOI

[5] A. A. Ligun, “Exact Jackson type inequalities for periodic functions in the spaces $L_2$”, Math. Notes, 43:6 (1988), 435–443 | DOI

[6] Ivanov V. I., Smirnov O. I., Konstanty Dzheksona i konstanty Junga v prostranstvah $L_p$, Tulskiy gosudarstvennyj universitet, Tula, 1995 (in Russian)

[7] A. G. Babenko, N. I. Chernykh, V. T. Shevaldin, “The Jackson–Stechkin inequality in $L_2$ with a trigonometric modulus of continuity”, Math. Notes, 65:6 (1999), 777–781 | DOI | DOI

[8] S. B. Vakarchuk, “$\mathcal{K}$-functionals and exact values of $n$-widths of some classes in $L_2$”, Math. Notes, 66:4 (1999), 404–408 | DOI | DOI

[9] M. G. Esmaganbetov, “Widths of classes from $L_{2}[0,2\pi]$ and the minimization of exact constants in Jackson-type inequalities”, Math. Notes, 65:6 (1999), 689–693 | DOI | DOI

[10] V. A. Abilov, F. V. Abilova, “Problems in the approximation of $2\pi$-periodic functions by Fourier sums in the space $L_{2}(2\pi)$”, Math. Notes, 76:6 (2004), 749–757 | DOI | DOI

[11] S. B. Vakarchuk, “Exact constants in Jackson-type inequalities and exact values of widths”, Math. Notes, 78:5 (2005), 735–739 | DOI | DOI

[12] M. Sh. Shabozov, “Widths of classes periodical differentiable functions in $L_2[0,2\pi]$”, Math. Notes, 87:4 (2010), 575–581 | DOI | DOI

[13] M. Sh. Shabozov, “The exact constants in the inequality of Jackson type and the exact value of $n$-widths of some classes functions from $L_2$”, News of the Academy of Sciences of the Republic of Tajikistan. Department of physical, mathematical, chemical, geological and technical sciences, 2010, no. 4(141), 7–24

[14] M. Sh. Shabozov, G. A. Yusupov, “Best polynomial approximation in $L_2$ of classes of $2\pi$-periodic functions and exact values of their widths”, Math. Notes, 90:5 (2011), 748–757 | DOI | DOI

[15] M. Sh. Shabozov, G. A. Yusupov, “Exact constants in Jackson-type inequalities and exact values of the widths of some classes of functions in $L_2$”, Siberian Mathematical Journal, 52:6 (2011), 1124–1136 | DOI

[16] M. Sh. Shabozov, G. A. Yusupov, “Widths of Certain Classes of Periodic Functions in $L_2$”, Journal of Approximation Theory, 164:1 (2012), 869–878 | DOI

[17] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenij, Moskovskij gosudarstvennyj universitet, M., 1976 (in Russian)

[18] A. Pinkus, $n$-Widths in Approximation Theory, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1985

[19] S. B. Vakarchuk, V. I. Zabutnaya, “Jackson–Stechkin type inequalities for special moduli of continuity and widths of function classes in the space $L_2$”, Math. Notes, 92:4 (2012), 458–472 | DOI | DOI

[20] M. Sh. Shabozov, K. Tukhliev, “The best polynomial approximation and the widths of some functional classes in $L_2$”, Math. Notes, 94:6 (2013), 930–937 | DOI | DOI

[21] K. V. Runovskiĭ, “On approximation by families of linear polynomial operators in $L_{p}$-spaces, $0

1$”, Russian Acad. Sci. Sb. Math., 82:2 (1995), 441–459

[22] Dzyadik V. K., Vvedenie v teoriyu ravnomernogo priblizheniya, Nauka, M., 1977 (in Russian)