Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2015_22_1_a5, author = {M. A. Kalashnikova}, title = {Zero-order approximation of three-time scale singular linear-quadratic optimal control problem}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {85--104}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2015_22_1_a5/} }
TY - JOUR AU - M. A. Kalashnikova TI - Zero-order approximation of three-time scale singular linear-quadratic optimal control problem JO - Modelirovanie i analiz informacionnyh sistem PY - 2015 SP - 85 EP - 104 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2015_22_1_a5/ LA - ru ID - MAIS_2015_22_1_a5 ER -
%0 Journal Article %A M. A. Kalashnikova %T Zero-order approximation of three-time scale singular linear-quadratic optimal control problem %J Modelirovanie i analiz informacionnyh sistem %D 2015 %P 85-104 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2015_22_1_a5/ %G ru %F MAIS_2015_22_1_a5
M. A. Kalashnikova. Zero-order approximation of three-time scale singular linear-quadratic optimal control problem. Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 1, pp. 85-104. http://geodesic.mathdoc.fr/item/MAIS_2015_22_1_a5/
[1] H. K. Khalil, P. V. Kokotovic, “Control of Linear Systems with Multiparameter Singular Perturbations”, Automatica, 15:2 (1979), 197–207 | DOI
[2] I. V. Gribkovskaya, A. I. Kalinin, “Asymptotic optimization of a linear singularly perturbed system containing parameters of variable orders of smallness at the derivatives”, Computational Mathematics and Mathematical Physics, 35:9 (1995), 1041–1051
[3] Voropaeva N. V., Sobolev V. A., Geometricheskaya dekompozitsiya singulyarno vozmushchennykh sistem, Fizmatlit, M., 2009 (in Russian)
[4] Vasil’eva A. B., Butuzov V. F., Asimptoticheskie razlozheniya resheniy singulyarno vozmushchennykh uravneniy, Nauka, M., 1973 (in Russian)
[5] V. R. Saksena, J. O'Reilly, P. V. Kokotovic, “Singular Perturbations and Time-scale Methods in Control Theory: Survey 1976–1983”, Automatica, 20:3 (1984), 273–293 | DOI
[6] M. G. Dmitriev, G. A. Kurina, “Singular perturbations in control problems”, Automation and Remote Control, 67:1 (2006), 1–43 | DOI
[7] Y. Zhang, D. S. Naidu, C. X. Cai, Y. Zou, “Singular perturbations and time scales in control theories and applications: an overview 2002–2012”, Int. J. Inf. Syst. Sci., 9:1 (2014), 1–36
[8] G. S. Ladde, D. D. Šiljak, “Multiparameter Singular Perturbations of Linear Systems with Multiple Time Scales”, Automatica, 19:4 (1983), 385–394 | DOI
[9] G. A. Kurina, “Complete controllability of various-speed singularly perturbed systems”, Mathematical Notes, 52:4 (1992), 1029–1033 | DOI
[10] A. R. Danilin, O. O. Kovrizhnykh, “On the Asymptotics of the Solution of a System of Linear Equations with Two Small Parameters”, Differential Equations, 44:6 (2008), 757–767 | DOI
[11] Y. Y. Wang, P. M. Frank, N. E. Wu, “Near-Optimal Control of Nonstandard Singularly Perturbed Systems”, Automatica, 30:2 (1994), 277–292 | DOI
[12] H. Mukaidani, H. Xu, K. Mizukami, “New Results for near-optimal control of linear multiparameter singularly perturbed systems”, Automatica, 39 (2003), 2157–2167 | DOI
[13] S. V. Belokopytov, M. G. Dmitriev, “Solution of classical optimal control problems with a boundary layer”, Automation and Remote Control, 50:7 (1989), 907–917
[14] Rozonoer L. I., “Printsip maksimuma L. S. Pontryagina v teorii optimalnykh sistem, I”, Avtomatika i telemekhanika, 20:10 (1959), 1320–1334 (in Russian)
[15] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishechenko, The mathematical theory of optimal processes, Interscience Publishers, New York, 1962