Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2015_22_1_a1, author = {N. A. Kudryashov}, title = {Method of the logistic function for finding analytical solutions of nonlinear differential equations}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {23--37}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MAIS_2015_22_1_a1/} }
TY - JOUR AU - N. A. Kudryashov TI - Method of the logistic function for finding analytical solutions of nonlinear differential equations JO - Modelirovanie i analiz informacionnyh sistem PY - 2015 SP - 23 EP - 37 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2015_22_1_a1/ LA - en ID - MAIS_2015_22_1_a1 ER -
%0 Journal Article %A N. A. Kudryashov %T Method of the logistic function for finding analytical solutions of nonlinear differential equations %J Modelirovanie i analiz informacionnyh sistem %D 2015 %P 23-37 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2015_22_1_a1/ %G en %F MAIS_2015_22_1_a1
N. A. Kudryashov. Method of the logistic function for finding analytical solutions of nonlinear differential equations. Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 1, pp. 23-37. http://geodesic.mathdoc.fr/item/MAIS_2015_22_1_a1/
[1] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, “Method for solving the Korteweg–de Vries equation”, Phys. Rev. Lett., 19 (1967), 1095–1097 | DOI
[2] V. E. Zakharov, A. B. Shabat, “A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem, Funkts”, Anal. Prilozh., 8:3 (1974), 43–53
[3] V. E. Zakharov, A. B. Shabat, “A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem, II”, Funkts. Anal. Prilozh., 13:3 (1979), 13–22
[4] R. Hirota, “Exact solution of the Korteweg–de Vries equation for multiple collisions of solitons”, Phys. Rev. Lett., 27 (1971), 1192–1194 | DOI
[5] P. J. Olver, Applications of Lie groups to differential equations, Springer-Verlag, New York, 1993
[6] N. A. Kudryashov, “Exact soliton solutions of the generalized evolution equation of wave dynamics”, PMM-J. Appl. Math. Mech., 52 (1988), 361–365 | DOI
[7] N. A. Kudryashov, “Exact solutions of the generalized Kuramoto–Sivashinsky equation”, Phys. Lett. A, 147 (1990), 287–291 | DOI
[8] W. Malfliet, W. Hereman, “The tanh method. I: Exact solutions of nonlinear evolution and wave equations”, Phys. Scripta, 54 (1996), 563–568 | DOI
[9] E. J. Parkes, B. R. Duffy, “An automated tanh-function method for finding solitary wave solutions to nonlinear evolution equations”, Comput. Phys. Commun., 98 (1996), 288–300 | DOI
[10] W. Malfliet, W. Hereman, “The tanh method. II: Perturbation technique for conservative systems”, Phys. Scripta, 54 (1996), 569–575 | DOI
[11] N. A. Kudryashov, “Simplest equation method to look for exact solutions of nonlinear differential equations”, Chaos Soliton Frac., 24 (2005), 1217–1231 | DOI
[12] N. A. Kudryashov, N. B. Loguinova, “Extended simplest equation method for nonlinear differential equations”, Appl. Math. Comp., 205 (2008), 396–402 | DOI
[13] N. K. Vitanov, “Application of simplest equations of Bernoulli and Riccati kind for obtaining exact traveling-wave solutions for a class of PDEs with polynomial nonlinearity”, Commun. Nonlinear Sci. Numer. Simulat., 15 (2010), 2050–2060 | DOI
[14] N. K. Vitanov, “Modified method of simplest equation: Powerful tool for obtaining exact and approximate traveling-wave solutions of nonlinear PDEs”, Commun. Nonlinear Sci. Numer. Simulat., 16 (2011), 1176–1185 | DOI
[15] A. J. M. Jaward, M. D. Petkovic, A. Biswas, “Modified simple equation method for nonlinear evolution equations”, Appl. Math. Comput., 217 (2010), 869–877 | DOI
[16] M. L. Wang, X. Li, J. Zhang, “The G'/G–expansion method and evolution equation in mathematical physics”, Phys. Lett. A, 372 (2008), 417–421 | DOI
[17] N. A. Kudryashov, “A note on the G'/G–expansion method”, Appl. Math. Comput., 217 (2010), 1755–1758 | DOI
[18] A. Biswas, “Solitary wave solution for the generalized Kawahara equation”, Appl. Math. Lett., 22 (2009), 208–210 | DOI
[19] W. W. Li, Y. Tian, Z. Zhang, “F-expansion method and its application for finding new exact solutions to the sine-Gordon and sinh-Gordon equations”, Applied mathematics and computation, 219:3 (2012), 1135–1143 | DOI
[20] Y. M. Zhao, “F-expansion method and its application for finding new exact solutions to the Kudryashov–Sinelshchikov equation”, Journal of Applied Mathematics, 2013, 895760
[21] Y. He, S. Li, Y. Long, “A improved F-expansion method and its application to Kudryashov–Sinelshchikov equation”, Mathematical Methods in the Applied Sciences, 37:12 (2014), 1717–1722 | DOI
[22] N. A. Kudryashov, “Seven common errors in finding exact solutions of nonlinear differential equations”, Communications in Nonlinear Science and Numerical Simulation, 2009
[23] N. A. Kudryashov, “One method for finding exact solutions of nonlinear differential equations”, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 2248–2253 | DOI
[24] N. A. Gershenfield, The Nature of mathematical modeling, Cambridge University Press, Cambridge, UK, 1999
[25] G. C. Wu, D. Baleanu, “Discrete fractional logistic map and its chaos”, Nonlinear Dynamics, 75 (2014), 283–287 | DOI
[26] F. J. Richards, “A flexible growth function for empirical use”, J. Exp. Bot., 10 (1959), 290–300 | DOI
[27] N. A. Kudryashov, “Polynomials in logistic function and solitary waves of nonlinear differential equations”, Appl. Math. Comput., 219 (2013), 9245–9253 | DOI
[28] N. A. Kudryashov, “Quasi-exact solutions of the dissipative Kuramoto-Sivashinsky equation”, Appl. Math. Comput., 219 (2013), 9213–9218 | DOI
[29] N. A. Kudryashov, “Meromorphic solutions of nonlinear ordinary differential equations”, Commun Nonlinear Sci Numer Simulat., 15 (2010), 2778–2790 | DOI
[30] Y. Kuramoto, T. Tsuzuki, “Persistent propagation of concentration waves in dissipative media far from thermal equilibrium”, Progress of theoretical physics, 55:2 (1976), 356–369 | DOI
[31] G. I. Sivashinsky, “Instabilities, pattern formation, and turbulence in flames”, Ann. Rev. Fluid Mech., 15 (1983), 179–199 | DOI
[32] D. J. Benney, “Long waves on liquid films”, Journal of Mathematics and Physics, 45 (1966), 150–155
[33] J. Topper, T. Kawahara, “Approximate equations for long nonlinear waves on a viscous fluid”, Journal of the Physical society of Japan, 44:2 (1978), 663–666 | DOI
[34] V. Ya. Shkadov, “Solitary waves in a layer of viscous liquid”, Fluid Dynamics, 12:1 (1977), 52–55 | DOI
[35] B. I. Cohen, W. M. Tang, J. A. Krommes, M. N. Rosenbluth, “Non-linear saturation of the dissipative trapped-ion mode by mode coupling”, Nuclear fusion, 16 (1976), 971–992 | DOI
[36] D. Michelson, “Elementary particles as solutions of the Sivashinsky equation”, Physica D, 44 (1990), 502–556 | DOI
[37] N. A. Kudryashov, D. I. Sinelschikov, I. L. Chernyavsky, “Nonlinear evolution equations for description of perturbation in tube”, Nonlinear dynamics, 4:1, 69–86
[38] N. A. Kudryashov, E. D. Zargaryan, “Solitary waves in active-dissipative dispersive media”, J. Phys. A.: Math. Gen., 29 (1996), 8067–8077 | DOI
[39] Z. N. Zhu, “Exact Solutions to the two-dimensional generalized fifth order Kuramoto–Sivashinsky-type equation”, Chinese Journal of Physics, 34:2 (1996), 85–90
[40] N. G. Berloff, L. N. Howard, “Solitary and Periodic Solutions of nonlinear nonintegrable equations”, Studies in Applied Mathematics, 99, 1–24
[41] Z. Fu, S. Liu, S. Liu, “New exact solutions to the KdV–Burgers–Kuramoto equation”, Chaos, Solitons and Fractals, 23 (2005), 609–616 | DOI
[42] N. A. Kudryashov, “Simplest equation method to look for exact solutions of nonlinear differential equations”, Chaos, Solitons and Fractals, 24 (2005), 1217–1231 | DOI
[43] S. Zhang, “New exact solutions of the KdV–Burgers–Kuramoto equation”, Phys Lett. A., 358, 414–420
[44] S. A. Khuri, “Traveling wave solutions for nonlinear differential equations: a unified ansätze approach”, Chaos, Solitons and Fractals, 32 (2007), 252–258 | DOI
[45] J. Nickel, “Travelling wave solutions to the Kuramoto–Sivashinsky equation”, Chaos, Solitons and Fractals, 33 (2007), 1376–1382 | DOI
[46] N. A. Kudryashov, M. V. Demina, “Polygons of differential equations for finding exact solutions”, Chaos, Solitons and Fractals, 33 (2007), 1480–1496 | DOI
[47] H. Aspe, M. C. Depassier, “Evolution equation of survace waves in a convecting fluids”, Physical Review A, 41:6, 19900, 3125–3128 | DOI
[48] A. V. Porubov, “Exact travelling wave solutions of nonlinear evolution of survace waves in a convecting fluids”, Journal of Physics A. Mathematical and General, 26:7 (1993), L797–L800 | DOI
[49] N. A. Kudryashov, D. I. Sinelshchikov, “Exiended models of non-linear waves in liquid with gas bubbles”, International Journal of Non-Linear Mechanics, 63 (2014), 31–38 | DOI
[50] M. V. Demina, N. A. Kudryashov, “Explicit expressions for meromorphic solutions of autonomous nonlinear ordinary differential equations”, Commun. Nonlinear Sci. Numer. Simulat., 16 (2011), 1127–1134 | DOI
[51] M. V. Demina, N. A. Kudryashov, “From Laurent series to exact meromorphic solutions: The Kawahara equation”, Phys. Lett. A, 374 (2010), 4023–4029 | DOI
[52] M. V. Demina, N. A. Kudryashov, “On elliptic solutions of nonlinear ordinary differential equations”, Applied Mathematics and Computation, 217:23 (2011), 9849–9853 | DOI