Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2014_21_5_a7, author = {A. N. Maksimenko}, title = {Characteristics of complexity: clique number of a polytope graph and rectangle covering number}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {116--130}, publisher = {mathdoc}, volume = {21}, number = {5}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2014_21_5_a7/} }
TY - JOUR AU - A. N. Maksimenko TI - Characteristics of complexity: clique number of a polytope graph and rectangle covering number JO - Modelirovanie i analiz informacionnyh sistem PY - 2014 SP - 116 EP - 130 VL - 21 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2014_21_5_a7/ LA - ru ID - MAIS_2014_21_5_a7 ER -
%0 Journal Article %A A. N. Maksimenko %T Characteristics of complexity: clique number of a polytope graph and rectangle covering number %J Modelirovanie i analiz informacionnyh sistem %D 2014 %P 116-130 %V 21 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2014_21_5_a7/ %G ru %F MAIS_2014_21_5_a7
A. N. Maksimenko. Characteristics of complexity: clique number of a polytope graph and rectangle covering number. Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 5, pp. 116-130. http://geodesic.mathdoc.fr/item/MAIS_2014_21_5_a7/
[1] Bondarenko V. A., Poliedralnye grafy i slozhnost v kombinatornoy optimizatsii, YarGU, Yaroslavl, 1995
[2] Bondarenko V. A., Maksimenko A. N., Geometricheskie konstruktsii i slozhnost v kombinatornoy optimizatsii, LKI, Moskva, 2008
[3] V. A. Bondarenko, A. V. Nikolaev, “Combinatorial and Geometric Properties of the Max-Cut and Min-Cut Problems”, Doklady Mathematics, 88:2 (2013), 516–517
[4] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, A Series of Books in the Mathematical Sciences, W. H. Freeman and Co., San Francisco, Calif., 1979
[5] V. A. Yemelichev, M. M. Kovalev, M. K. Kravtsov, Polytopes, Graphs and Optimisation, translated by G.H. Lawden, Cambridge Univ. Press, Cambridge, 1984
[6] Kolesov E. V., Maksimenko A. N., “Analiz odnogo algoritma dlya zadachi o naznacheniyakh”, Zametki po informatike i matematike, 1 (2009), 36–40, YarGU, Yaroslavl
[7] A. N. Maksimenko, “Combinatorial properties of the polyhedron of the shortest path problem”, Comput. Math. Math. Phys., 44:9 (2004), 1611–1614
[8] Maksimenko A. N., “k-smezhnostnye grani buleva kvadratichnogo mnogogrannika”, Fundamentalnaya i prikladnaya matematika, 18:2 (2013), 95–103
[9] M. Ju. Moshkov, “On conditional tests”, Academy of Sciences Doklady, 265:3 (1982), 550–552
[10] Yu. Bogomolov, S. Fiorini, A. Maksimenko, K. Pashkovich, “Small Extended Formulations for Cyclic Polytopes”, arXiv: 1401.8138
[11] M. Conforti, G. Cornuéjols, G. Zambelli, “Extended formulations in combinatorial optimization”, A Quarterly Journal of Operations Research, 8:1 (2010), 1–48
[12] M. M. Deza, M. Laurent, Geometry of cuts and metrics, Springer, 1997
[13] S. Fiorini, S. Massar, S. Pokutta, H. R. Tiwary, R. de Wolf, “Linear vs. semidefinite extended formulations: exponential separation and strong lower bounds”, STOC, 2012, 95–106
[14] S. Fiorini, V. Kaibel, K. Pashkovich, D. O. Theis, “Combinatorial Bounds on Nonnegative Rank and Extended Formulations”, Discrete Math., 313:1 (2013), 67–83
[15] P. Gaiha, S. K. Gupta, “Adjacent vertices on a permutohedron”, SIAM Journal on Applied Mathematics, 32:2 (1977), 323–327
[16] V. Kaibel, “Extended Formulations in Combinatorial Optimization”, Optima, 85 (2011)
[17] V. Kaibel, S. Weltge, “A Short Proof that the Extension Complexity of the Correlation Polytope Grows Exponentially”, 2013, arXiv: 1307.3543
[18] A. N. Maksimenko, “A special place of Boolean quadratic polytopes among other combinatorial polytopes”, arXiv: 1408.0948
[19] T. Rothvoss, “The matching polytope has exponential extension complexity”, STOC, 2014, 263–272
[20] M. Yannakakis, “Expressing combinatorial optimization problems by linear programs”, J. Comput. System Sci., 43:3 (1991), 441–466