Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2014_21_5_a3, author = {S. A. Kashchenko}, title = {The dynamics of the logistic equation with delay and delayed control}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {61--77}, publisher = {mathdoc}, volume = {21}, number = {5}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2014_21_5_a3/} }
TY - JOUR AU - S. A. Kashchenko TI - The dynamics of the logistic equation with delay and delayed control JO - Modelirovanie i analiz informacionnyh sistem PY - 2014 SP - 61 EP - 77 VL - 21 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2014_21_5_a3/ LA - ru ID - MAIS_2014_21_5_a3 ER -
S. A. Kashchenko. The dynamics of the logistic equation with delay and delayed control. Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 5, pp. 61-77. http://geodesic.mathdoc.fr/item/MAIS_2014_21_5_a3/
[1] G. Hale, Theory of functional differential equations, Springer-Verlag, New York, 1977
[2] O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel, H.-O. Walther, Delay Equations: Functional-, Complex-, and Nonlinear Analysis, Springer-Verlag, New York, 1995
[3] J. Wu, Theory and Applications of Partial Functional Differential Equations Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, New York, 1996
[4] H. Haken, Brain Dinamics; Synchronization and Activity Patterns in Pulse-Coupled Neural Nets with Delays and Noise, Springer, 2002
[5] R. M. May, Stability and Complexity in Model Ecosystems, 2nd ed., Princeton University Press, Princeton, 1974
[6] Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer, 1984
[7] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, New York, 1993
[8] W. Huang, “Global dynamics for a reaction-diffusion equation with time delay”, J. Differential Equations, 143 (1998), 293–326
[9] K. Pyragas, “Continious control of chaos by self-controlling feedback”, Phys. Lett. A, 17 (1992), 42
[10] H. Nakajima, Y. Ueda, “Limitation of generalized delayed feedback control of chaos”, Physica D., 111 (1998), 143
[11] P. Hovel, E. Scholl, “Control of unstable steady states by time-delayed feedback methods”, Physical Review E, 75 (2005), 046203
[12] B. Fiedler, V. Flunkert, M. Georgi, P. Hovel, E. Scholl, “Refuting the odd number limitation of time-delayed feedback control”, Phys. Rev. Lett., 98 (2007), 114101
[13] E. M. Wright, “A non-linear differential equation”, J. Reine Angew. Math., 194:1-4 (1955), 66–87
[14] S. Kakutani, L. Markus, “On the non-linear difference-differential equation \(y'(t)=(a - by(t-\tau))y(t)\) contributions to the theory of non-linear oscillations”, Ann. Math. Stud. Princeton University Press, IV (1958), 1–18
[15] G. S. Jones, “The existence of periodic solutions of \(f^{\prime}(x) = -\alpha f(x - 1) [1 + f(x)]\)”, T. Math. Anal. and Appl., 5 (1962), 435–450
[16] Kashchenko S. A., “Asymptotics of periodical solution of Hutchinson generalized equation”, Studies of Stability and Theory of Oscillations, YarGU, Yaroslavl, 1981, 64–85
[17] Kashchenko S. A., “Asymptotics of Solutions of the Generalized Hutchinson's Equation”, Model. and Anal. Inform. Sist., 19:3 (2012), 32–62
[18] Grigorieva E. V., Kashchenko S. A., Relaxation oscillations in lasers, URSS, Moscow, 2013
[19] Kashchenko S. A., “Relaxation Oscillations in a System with Delays Modeling the Predator-Prey Problem”, Model. and Anal. Inform. Sist., 20:1 (2013), 52–98
[20] S. A. Kashchenko, “Study by large parameter method of system of nonlinear differential-difference equations modeling “predator-sacrifice” problem”, Dokl. Akad. Nauk USSR, 266 (1982), 792–795
[21] Kashchenko S. A., “Stationary States of a Delay Differentional Equation of Insect Population's Dynamics”, Model. and Anal. Inform. Sist., 19:5 (2012), 18–34
[22] Kashchenko S. A., “Stationary regimes of equation describing numbers of insects”, Reports Academy of Sciences of the USSR, 273 (1983), 328–330
[23] R. E. Edwards, Functional Analysis: Theory and Applications, Dover Pub, New York, 1965
[24] Kashchenko S. A., “Bifurcations in the neighborhood of a cycle under small perturbations with a large delay”, Zh. vychisl. mat. i mat. fiz., 40:5 (2000), 693–702
[25] J. Marsden, M. McCracken, The Hopf Bifurcation and Its Applications, Springer–Verlag, New York, 1976
[26] P. Hartman, Ordinary Differential Equations, Wiley, 1964
[27] Kashchenko S. A., “Application of method of normalization for studying of differential-difference equations with small multiplier for derivative”, Differential Equations, 25:8 (1989), 1448–1451
[28] S. A. Kaschenko, “Normalization in the systems with small diffusion”, International Journal of Bifurcations and chaos, 6:7 (1996), 1093–1109
[29] Kashchenko S. A., “On the quasi-normal forms for parabolic equations with small diffusion”, Reports Academy of Sciences of the USSR, 299 (1988), 1049–1053
[30] Kashchenko S. A., “Local Dynamics of non-linear singular perturbation systems with delay”, Diff. Equations, 35:10 (1999), 1343–1355
[31] I. S. Kashchenko, “Dynamics of an Equation with a Large Coefficient of Delay Control”, Doklady Mathematics, 83:2 (2011), 258–261
[32] I. S. Kashchenko, “Asymptotic Study of the Corporate Dynamics of Systems of Equations Coupled by Delay Control”, Doklady Mathematics, 85:2 (2012), 163–166
[33] Kashchenko S. A., “The Ginzburg–Landau equation as a normal form for a second-order difference-differential equation with a large delay”, Zh. Vychisl. Mat. Mat. Fiz., 38:3 (1998), 457–465