Doubly periodic meromorphic solutions of autonomous nonlinear differential equations
Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 5, pp. 49-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of constructing and classifying elliptic solutions of nonlinear differential equations is studied. An effective method enabling one to find an elliptic solution of an autonomous nonlinear ordinary differential equation is described. The method does not require integrating additional differential equations. Much attention is paid to the case of elliptic solutions with several poles inside a parallelogram of periods. With the help of the method we find elliptic solutions up to the fourth order inclusively of an ordinary differential equation with a number of physical applications. The method admits a natural generalization and can be used to find elliptic solutions satisfying systems of ordinary differential equations.
Mots-clés : meromorphic solutions, elliptic solutions
Keywords: autonomous nonlinear differential equations.
@article{MAIS_2014_21_5_a2,
     author = {M. V. Demina and N. A. Kudryashov},
     title = {Doubly periodic meromorphic solutions of autonomous nonlinear differential equations},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {49--60},
     publisher = {mathdoc},
     volume = {21},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2014_21_5_a2/}
}
TY  - JOUR
AU  - M. V. Demina
AU  - N. A. Kudryashov
TI  - Doubly periodic meromorphic solutions of autonomous nonlinear differential equations
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2014
SP  - 49
EP  - 60
VL  - 21
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2014_21_5_a2/
LA  - ru
ID  - MAIS_2014_21_5_a2
ER  - 
%0 Journal Article
%A M. V. Demina
%A N. A. Kudryashov
%T Doubly periodic meromorphic solutions of autonomous nonlinear differential equations
%J Modelirovanie i analiz informacionnyh sistem
%D 2014
%P 49-60
%V 21
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2014_21_5_a2/
%G ru
%F MAIS_2014_21_5_a2
M. V. Demina; N. A. Kudryashov. Doubly periodic meromorphic solutions of autonomous nonlinear differential equations. Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 5, pp. 49-60. http://geodesic.mathdoc.fr/item/MAIS_2014_21_5_a2/

[1] N. A. Kudryashov, “Exact soliton solutions of the generalized evolution equation of wave dynamics”, Journal of Applied Mathematics and Mechanics, 52 (3) (1988), 360–365

[2] N. A. Kudryashov, “Exact solutions of the generalized Kuramoto–Sivashinsky equation”, Phys. Lett. A, 147 (1990), 287–291

[3] N. A. Kudryashov, “On types of nonlinear nonintegrable differential equations with exact solutions”, Phys. Lett. A, 155 (1991), 269–275

[4] N. A. Kudryashov, “Partial differential equations with solutions having movable first – order singularities”, Phys. Lett. A, 169 (1992), 237–242

[5] E. J. Parkes, B. R. Duffy, P. C. Abbott, “The Jacobi elliptic–function method for finding periodic–wave solutions to nonlinear evolution equations”, Phys. Lett. A, 295 (2002), 280–286

[6] Z. Fu, S. Liu, S. Liu, “New transformations and new approach to find exact solutions to nonlinear equations”, Phys. Lett. A, 229 (2002), 507–512

[7] S. Yu. Vernov, “Constructing Solutions for the Generalized Henon–Heiles System Through the Painleve Test”, TMF, 135:3 (2003), 792–801

[8] A. N. W. Hone, “Non–existence of elliptic travelling wave solutions of the complex Ginzburg–Landau equation”, Physica D., 205 (2005), 292–306

[9] N. A. Kudryashov, “Simplest equation method to look for exact solutions of nonlinear differential equations”, Chaos, Solitons and Fractals, 24 (2005), 1217–1231

[10] S. Yu. Vernov, “Proof of the Absence of Elliptic Solutions of the Cubic Complex Ginzburg–Landau Equation”, TMF, 146:1 (2006), 131–139

[11] Y. Chen, Z. Yan, “The Weierstrass elliptic function expansion method and its applications in nonlinear wave equations”, Chaos Solitons and Fractals, 29:4 (2006), 948–964

[12] N. A. Kudryashov, N. B. Loguinova, “Extended simplest equation method for nonlinear differential equations”, Applied Mathematics and Computation, 205 (2008), 396–402

[13] N. A. Kudryashov, “On “new travelling wave solutions” of the KdV and the KdV–Burgers equations”, Commun. Nonlinear. Sci. Numer. Simulat., 14 (2009), 1891–1900

[14] N. A. Kudryashov, N. B. Loguinova, “Be careful with the Exp–function method”, Commun. Nonlinear. Sci. Numer. Simulat., 14 (2009), 1881–1890

[15] N. A. Kudryashov, “Seven common errors in finding exact solutions of nonlinear differential equations”, Commun. Nonlinear. Sci. Numer. Simulat., 14 (2009), 3507–3529

[16] M. V. Demina, N. A. Kudryashov, “Explicit expressions for meromorphic solutions of autonomous nonlinear ordinary differential equations”, Commun. Nonlinear Sci. Numer. Simulat., 16 (2011), 1127–1134

[17] M. V. Demina, N. A. Kudryashov, “From Laurent series to exact meromorphic solutions: The Kawahara equation”, Phys. Lett. A, 374 (2010), 4023–4029

[18] M. V. Demina, N. A. Kudryashov, “Elliptic solutions in the Hénon-Heiles model”, Commun. Nonlinear Sci. Numer. Simulat., 19 (3) (2014), 471–482

[19] M. Musette, R. Conte, “Analytic solitary waves of nonintegrable equations”, Physica D., 181 (2003), 70–79

[20] R. Conte, M. Musette, “Elliptic general analytic solutions”, Studies in Applied Mathematics, 123 (2009), 63–81