On the number of coexisting autowaves in the chain of coupled oscillators
Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 5, pp. 162-180.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a model of neuron complex formed by a chain of diffusion coupled oscillators. Every oscillator simulates a separate neuron and is given by a singularly perturbed nonlinear differential-difference equation with two delays. Oscillator singularity allows reduction to limit system without small parameters but with pulse external action. The statement on correspondence between the resulting system with pulse external action and the original oscillator chain gives a way to demonstrate that under consistent growth of the chain node number and decrease of diffusion coefficient we can obtain in this chain unlimited growth of its coexistent stable periodic orbits (buffer phenomenon). Numerical simulations give the actual dependence of the number of stable orbits on the diffusion parameter value.
Keywords: difference-differential equations, relaxation cycle, autowaves, stability, buffering, bursting.
@article{MAIS_2014_21_5_a10,
     author = {Yu. V. Bogomolov and S. D. Glyzin and A. Yu. Kolesov},
     title = {On the number of coexisting autowaves in the chain of coupled oscillators},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {162--180},
     publisher = {mathdoc},
     volume = {21},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2014_21_5_a10/}
}
TY  - JOUR
AU  - Yu. V. Bogomolov
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
TI  - On the number of coexisting autowaves in the chain of coupled oscillators
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2014
SP  - 162
EP  - 180
VL  - 21
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2014_21_5_a10/
LA  - ru
ID  - MAIS_2014_21_5_a10
ER  - 
%0 Journal Article
%A Yu. V. Bogomolov
%A S. D. Glyzin
%A A. Yu. Kolesov
%T On the number of coexisting autowaves in the chain of coupled oscillators
%J Modelirovanie i analiz informacionnyh sistem
%D 2014
%P 162-180
%V 21
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2014_21_5_a10/
%G ru
%F MAIS_2014_21_5_a10
Yu. V. Bogomolov; S. D. Glyzin; A. Yu. Kolesov. On the number of coexisting autowaves in the chain of coupled oscillators. Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 5, pp. 162-180. http://geodesic.mathdoc.fr/item/MAIS_2014_21_5_a10/

[1] T. R. Chay, J. Rinzel, “Bursting, beating, and chaos in an excitable membrane model”, Biophys. J., 47:3 (1985), 357–366

[2] G. B. Ermentrout, N. Kopell, “Parabolic bursting in an excitable system coupled with a slow oscillation”, SIAM J. Appl. Math., 46:2 (1986), 233–253

[3] E. Izhikevich, “Neural excitability, spiking and bursting”, International Journal of Bifurcation and Chaos, 10:6 (2000), 1171–1266

[4] M. I. Rabinovich, P. Varona, A. I. Selverston, H. D. I. Abarbanel, “Dynamical principles in neuroscience”, Rev. Mod. Phys., 78 (2006), 1213–1265

[5] S. Coombes, P. C. Bressloff, Bursting: the genesis of rhythm in the nervous system, World Scientific Publishing Company, Hackensack, NJ, 2005

[6] Kolesov A. Yu., Rozov N. Kh., Invariantnye tory nelineynykh volnovykh uravneniy, Fizmatlit, M., 2004, 408 pp.

[7] Mishchenko E. F., Sadovnichii V. A., Kolesov A. Yu., Rozov N. Kh., Avtovolnovyye protsessy v nelineynykh sredakh s diffuziyey, Fizmatlit, M., 2005, 432 pp.

[8] S. Glyzin, A. Kolesov, N. Rozov, “Buffer phenomenon in neurodynamics”, Doklady Mathematics, 85:2 (2012), 297–300

[9] S. A. Kaschenko, V. V. Maiorov, Modeli volnovoi pamyati, Knizhnyi dom «LIBROKOM», M., 2009, 288 pp.

[10] A. L. Hodgkin, A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve”, J. Physiol., 117 (1952), 500–544

[11] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Discrete autowaves in neural systems”, Computational Mathematics and Mathematical Physics, 2:5 (2012), 702–719

[12] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Modeling the Bursting Effect in Neuron Systems”, Mathematical Notes, 93:5 (2013), 676–690

[13] S. D. Glyzin, E. O. Ovsyannikova, “Double Frequency Oscillations of an Impulse Neuron Equation with Two Delays”, Automatic Control and Computer Sciences, 47:7 (2013), 526–540 ??

[14] A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov, “Relay with delay and its $C^1$-approximation”, Dynamical systems and related topics. Proceedings of the Steklov Institute of Mathematics, 216 (1997), 119–146

[15] A. Yu. Kolesov, E. F. Mishchenko, N. Kh. Rozov, “A modification of Hutchinson's equation”, Computational Mathematics and Mathematical Physics, 50:12 (2010), 1990–2002

[16] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Relaxation self-oscillations in neuron systems: I”, Differential Equations, 47:7 (2011), 927–941 ??

[17] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Relaxation Self-oscillations in Hopfield Networks with Delay”, Izv. Math., 77:2 (2013), 271–312

[18] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Relaxation self-oscillations in neuron systems: II”, Differential Equations, 47:12 (2011), 1697–1713

[19] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Relaxation self-oscillations in neuron systems: III”, Differential Equations, 48:2 (2012), 159–175