Application of the method of quasi-normal forms to the mathematical model of a single neuron
Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 5, pp. 38-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a scalar nonlinear differential-difference equation with two delays, which models the behavior of a single neuron. Under some additional suppositions for this equation it is applied a well-known method of quasi-normal forms. Its essence lies in the formal normalization of the Poincare–Dulac, the production of a quasi-normal form and the subsequent application of the conformity theorems. In this case, the result of the application of quasi-normal forms is a countable system of differential-difference equations, which manages to turn into a boundary value problem of the Korteweg–de Vries equation. The investigation of this boundary value problem allows to make the conclusion about the behavior of the original equation. Namely, for a suitable choice of parameters in the framework of this equation it is implemented the buffer phenomenon consisting in the presence of the bifurcation mechanism for the birth of an arbitrarily large number of stable cycles.
Keywords: buffering, differential-difference equation, asymptotic form, stability, Korteweg–de Vries equation, quasi-normal forms.
@article{MAIS_2014_21_5_a1,
     author = {M. M. Preobrazhenskaya},
     title = {Application of the method of quasi-normal forms to the mathematical model of a single neuron},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {38--48},
     publisher = {mathdoc},
     volume = {21},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2014_21_5_a1/}
}
TY  - JOUR
AU  - M. M. Preobrazhenskaya
TI  - Application of the method of quasi-normal forms to the mathematical model of a single neuron
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2014
SP  - 38
EP  - 48
VL  - 21
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2014_21_5_a1/
LA  - ru
ID  - MAIS_2014_21_5_a1
ER  - 
%0 Journal Article
%A M. M. Preobrazhenskaya
%T Application of the method of quasi-normal forms to the mathematical model of a single neuron
%J Modelirovanie i analiz informacionnyh sistem
%D 2014
%P 38-48
%V 21
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2014_21_5_a1/
%G ru
%F MAIS_2014_21_5_a1
M. M. Preobrazhenskaya. Application of the method of quasi-normal forms to the mathematical model of a single neuron. Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 5, pp. 38-48. http://geodesic.mathdoc.fr/item/MAIS_2014_21_5_a1/

[1] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Modeling the Bursting Effect in Neuron Systems”, Mathematical Notes, 93:5 (2013), 676–690

[2] Glyzin S. D., Ovsyannikova E. O., “Quasiperiodic oscillations of a neuron equation with two delays”, Modeling and Analysis of Information Systems, 18:1 (2011), 86–105

[3] Kashchenko S. A., Maiorov V. V., Modeli volnovoy pamyati, Knizhnyy dom LIBROKOM, M., 2009

[4] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Buffer phenomenon in neurodynamics”, Doklady Mathematics, 85:2 (2012), 297–300

[5] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Discrete autowaves in neural systems”, Computational Mathematics and Mathematical Physics, 52:5 (2012), 702–719

[6] Glyzin S. D., “A registration of age groups for the Hutchinson's equation”, Modeling and Analysis of Information Systems, 14:3 (2007), 29–42

[7] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Extremal dynamics of the generalized Hutchinson equation”, Computational Mathematics and Mathematical Physics, 49:1 (2009), 71–83

[8] Kolesov A. Yu., Mishchenko E. F., Rozov N. Kh., “Asymptotic Methods of Investigation of Periodic Solutions of Nonlinear Hyperbolic Equations”, Proceedings of the Steklov Institute of Mathematics, 222, 1998, 1–189 | MR | Zbl

[9] Kolesov A. Yu., Mishchenko E. F., Rozov N. Kh., “New Methods for Proving the Existence and Stability of Periodic Solutions in Singularly Perturbed Delay Systems”, Proceedings of the Steklov Institute of Mathematics, 259, 2007, 101–127

[10] Kolesov A. Yu., Rozov N. Kh., Invariantnye tory nelineynykh volnovykh uravneniy, FIZMATLIT, M., 2004, 408 pp.