Perfect Prismatoids are Lattice Delaunay Polytopes
Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 4, pp. 47-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

A perfect prismatoid is a convex polytope $P$ such that for every its facet $F$ there exists a supporting hyperplane $\alpha\parallel F$ such that any vertex of $P$ belongs to either $F$ or $\alpha$. Perfect prismatoids concern with Kalai conjecture, that any centrally symmetric $d$-polytope $P$ has at least $3^d$ non-empty faces and any polytope with exactly $3^d$ non-empty faces is a Hanner polytope. Any Hanner polytope is a perfect prismatoid (but not vice versa). A $0/1$-polytope is a convex hull of some vertices of the $d$-dimensional unit cube. We prove that every perfect prismatoid is affinely equivalent to some $0/1$-polytope of the same dimension. (And therefore every perfect prismatoid is a lattice polytope.) Let $\Lambda$ be a lattice in $\mathbb{R}^d$ and $D$ be a polytope inscribed in a sphere $B$. Denote a boundary of $B$ by $\partial B$ and an interior of $B$ by $int\, B$. The polytope D is a lattice Delaunay polytope if $\Lambda\cap int\, B=\varnothing$ and $D$ is a convex hull of $\Lambda\cap\partial B$. We prove that every perfect prismatoid is affinely equivalent to some lattice Delaunay polytope.
Keywords: polytopes
Mots-clés : Delaunay polytopes, Kalai conjecture.
@article{MAIS_2014_21_4_a4,
     author = {M. A. Kozachok and A. N. Magazinov},
     title = {Perfect {Prismatoids} are {Lattice} {Delaunay} {Polytopes}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {47--53},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2014_21_4_a4/}
}
TY  - JOUR
AU  - M. A. Kozachok
AU  - A. N. Magazinov
TI  - Perfect Prismatoids are Lattice Delaunay Polytopes
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2014
SP  - 47
EP  - 53
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2014_21_4_a4/
LA  - ru
ID  - MAIS_2014_21_4_a4
ER  - 
%0 Journal Article
%A M. A. Kozachok
%A A. N. Magazinov
%T Perfect Prismatoids are Lattice Delaunay Polytopes
%J Modelirovanie i analiz informacionnyh sistem
%D 2014
%P 47-53
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2014_21_4_a4/
%G ru
%F MAIS_2014_21_4_a4
M. A. Kozachok; A. N. Magazinov. Perfect Prismatoids are Lattice Delaunay Polytopes. Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 4, pp. 47-53. http://geodesic.mathdoc.fr/item/MAIS_2014_21_4_a4/

[1] M. Dutour, “The six-dimensional Delaunay polytopes”, European Journal of Combinatorics, 25:4 (2004), 535–548 | DOI | MR | Zbl

[2] R. M. Erdahl, S. S. Ryshkov, “The empty sphere, I”, Canad. J. Math., 39:4 (1987), 794–824 | DOI | MR | Zbl

[3] R. M. Erdahl, S. S. Ryshkov, “The empty sphere, II”, Canad. J. Math., 40:5 (1988), 1058–1073 | DOI | MR | Zbl

[4] O. Hanner, “Intersections of translates of convex body”, Math. Scand., 4 (1956), 67–89 | MR

[5] G. Kalai, “The Number of Faces of Centrally-symmetric Polytopes”, Graphs and Combinatorics, 5 (1989), 389–391 | DOI | MR | Zbl

[6] R. Sanyal, A. Werner, G. Ziegler, “On Kalai's conjectures about centrally symmetric polytopes”, Discrete Comput. Geometry, 41 (2009), 183–198 | DOI | MR | Zbl

[7] G. F. Voronoï, “Nouvelles applications des paramètres continus à là théorie des formes quadratiques. Deuxième Mémoire: Recherches sur les parallélloedres primitifs”, J. für die reine und angewandte Mathematik, 134 (1908), 198–287 ; 136 (1909), 67–181 | Zbl

[8] Baranovskiy E. P., “Usloviya, pri kotorykh simpleks 6-mernoy reshetki yavlyaetsya $L$-simpleksom”, Nauch. tr. Ivan. gos. un-ta. Matematika, 1999, no. 2, 18–24 (in Russian) | MR

[9] Delone B. N., “Geometriya polozhitelnykh kvadratichnykh form”, UMN, 1937, no. 3, 16–62 (in Russian)

[10] Kozachok M. A., “Perfect Prismatoids and the Conjecture Concerning Face Numbers of Centrally Symmetric Polytopes”, Modeling and analysis of information systems, 19:6 (2012), 137–147 (in Russian)