Perfect Prismatoids are Lattice Delaunay Polytopes
Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 4, pp. 47-53
Voir la notice de l'article provenant de la source Math-Net.Ru
A perfect prismatoid is a convex polytope $P$ such that for every its facet $F$ there exists a supporting hyperplane $\alpha\parallel F$ such that any vertex of $P$ belongs to either $F$ or $\alpha$. Perfect prismatoids concern with Kalai conjecture, that any centrally symmetric $d$-polytope $P$ has at least $3^d$ non-empty faces and any polytope with exactly $3^d$ non-empty faces is a Hanner polytope. Any Hanner polytope is a perfect prismatoid (but not vice versa). A $0/1$-polytope is a convex hull of some vertices of the $d$-dimensional unit cube. We prove that every perfect prismatoid is affinely equivalent to some $0/1$-polytope of the same dimension. (And therefore every perfect prismatoid is a lattice polytope.) Let $\Lambda$ be a lattice in $\mathbb{R}^d$ and $D$ be a polytope inscribed in a sphere $B$. Denote a boundary of $B$ by $\partial B$ and an interior of $B$ by $int\, B$. The polytope D is a lattice Delaunay polytope if $\Lambda\cap int\, B=\varnothing$ and $D$ is a convex hull of $\Lambda\cap\partial B$. We prove that every perfect prismatoid is affinely equivalent to some lattice Delaunay polytope.
Keywords:
polytopes
Mots-clés : Delaunay polytopes, Kalai conjecture.
Mots-clés : Delaunay polytopes, Kalai conjecture.
@article{MAIS_2014_21_4_a4,
author = {M. A. Kozachok and A. N. Magazinov},
title = {Perfect {Prismatoids} are {Lattice} {Delaunay} {Polytopes}},
journal = {Modelirovanie i analiz informacionnyh sistem},
pages = {47--53},
publisher = {mathdoc},
volume = {21},
number = {4},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MAIS_2014_21_4_a4/}
}
TY - JOUR AU - M. A. Kozachok AU - A. N. Magazinov TI - Perfect Prismatoids are Lattice Delaunay Polytopes JO - Modelirovanie i analiz informacionnyh sistem PY - 2014 SP - 47 EP - 53 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2014_21_4_a4/ LA - ru ID - MAIS_2014_21_4_a4 ER -
M. A. Kozachok; A. N. Magazinov. Perfect Prismatoids are Lattice Delaunay Polytopes. Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 4, pp. 47-53. http://geodesic.mathdoc.fr/item/MAIS_2014_21_4_a4/