On the Root-class Residuality of HNN-extensions of Groups
Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 4, pp. 148-180

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal{K}$ be an arbitrary root class of groups. This means that $\mathcal{K}$ contains at least one non-unit group, is closed under taking subgroups and direct products of a finite number of factors and satisfies the Gruenberg condition: if $1 \leqslant Z \leqslant Y \leqslant X$ is a subnormal series of a group $X$ such that $X/Y \in \mathcal{K}$ and $Y/Z \in \mathcal{K}$, there exists a normal subgroup $T$ of $X$ such that $T \subseteq Z$ and $X/T \in \mathcal{K}$. In this paper we study the property `to be residually a $\mathcal{K}$-group' of an HNN-extension in the case when its associated subgroups coincide. Let $G = (B,\ t;\ t^{-1}Ht = H,\ \varphi)$. We get a sufficient condition for $G$ to be residually a $\mathcal{K}$-group in the case when $B \in \mathcal{K}$ and $H$ is normal in $B$, which turns out to be necessary if $\mathcal{K}$ is closed under factorization. We also obtain criteria for $G$ to be residually a $\mathcal{K}$-group provided that $\mathcal{K}$ is closed under factorization, $B$ is residually a $\mathcal{K}$-group, $H$ is normal in $B$ and satisfies at least one of the following conditions: $\operatorname{Aut}_G(H)$ is abelian (we denote by $\operatorname{Aut}_G(H)$ the group of all automorphisms of $H$ which are the restrictions on this subgroup of all inner automorphisms of $G$); $\operatorname{Aut}_G(H)$ is finite; $\varphi$ coincides with the restriction on $H$ of an inner automorphism of $B$; $H$ is finite; $H$ is infinite cyclic; $H$ is of finite Hirsh-Zaitsev rank (i. e. $H$ possesses a finite subnormal series all factors of which are either periodic or infinite cyclic). Besides, we find a sufficient condition for $G$ to be residually a $\mathcal{K}$-group in the case when $B$ is residually a $\mathcal{K}$-group and $H$ is a retract of $B$ ($\mathcal{K}$ is not necessarily closed under the factorization in this statement).
Keywords: HNN-extension, root class of groups, root-class residuality.
@article{MAIS_2014_21_4_a12,
     author = {E. A. Tumanova},
     title = {On the {Root-class} {Residuality} of {HNN-extensions} of {Groups}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {148--180},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2014_21_4_a12/}
}
TY  - JOUR
AU  - E. A. Tumanova
TI  - On the Root-class Residuality of HNN-extensions of Groups
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2014
SP  - 148
EP  - 180
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2014_21_4_a12/
LA  - ru
ID  - MAIS_2014_21_4_a12
ER  - 
%0 Journal Article
%A E. A. Tumanova
%T On the Root-class Residuality of HNN-extensions of Groups
%J Modelirovanie i analiz informacionnyh sistem
%D 2014
%P 148-180
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2014_21_4_a12/
%G ru
%F MAIS_2014_21_4_a12
E. A. Tumanova. On the Root-class Residuality of HNN-extensions of Groups. Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 4, pp. 148-180. http://geodesic.mathdoc.fr/item/MAIS_2014_21_4_a12/