On the Root-class Residuality of HNN-extensions of Groups
Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 4, pp. 148-180.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal{K}$ be an arbitrary root class of groups. This means that $\mathcal{K}$ contains at least one non-unit group, is closed under taking subgroups and direct products of a finite number of factors and satisfies the Gruenberg condition: if $1 \leqslant Z \leqslant Y \leqslant X$ is a subnormal series of a group $X$ such that $X/Y \in \mathcal{K}$ and $Y/Z \in \mathcal{K}$, there exists a normal subgroup $T$ of $X$ such that $T \subseteq Z$ and $X/T \in \mathcal{K}$. In this paper we study the property `to be residually a $\mathcal{K}$-group' of an HNN-extension in the case when its associated subgroups coincide. Let $G = (B,\ t;\ t^{-1}Ht = H,\ \varphi)$. We get a sufficient condition for $G$ to be residually a $\mathcal{K}$-group in the case when $B \in \mathcal{K}$ and $H$ is normal in $B$, which turns out to be necessary if $\mathcal{K}$ is closed under factorization. We also obtain criteria for $G$ to be residually a $\mathcal{K}$-group provided that $\mathcal{K}$ is closed under factorization, $B$ is residually a $\mathcal{K}$-group, $H$ is normal in $B$ and satisfies at least one of the following conditions: $\operatorname{Aut}_G(H)$ is abelian (we denote by $\operatorname{Aut}_G(H)$ the group of all automorphisms of $H$ which are the restrictions on this subgroup of all inner automorphisms of $G$); $\operatorname{Aut}_G(H)$ is finite; $\varphi$ coincides with the restriction on $H$ of an inner automorphism of $B$; $H$ is finite; $H$ is infinite cyclic; $H$ is of finite Hirsh-Zaitsev rank (i. e. $H$ possesses a finite subnormal series all factors of which are either periodic or infinite cyclic). Besides, we find a sufficient condition for $G$ to be residually a $\mathcal{K}$-group in the case when $B$ is residually a $\mathcal{K}$-group and $H$ is a retract of $B$ ($\mathcal{K}$ is not necessarily closed under the factorization in this statement).
Keywords: HNN-extension, root class of groups, root-class residuality.
@article{MAIS_2014_21_4_a12,
     author = {E. A. Tumanova},
     title = {On the {Root-class} {Residuality} of {HNN-extensions} of {Groups}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {148--180},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2014_21_4_a12/}
}
TY  - JOUR
AU  - E. A. Tumanova
TI  - On the Root-class Residuality of HNN-extensions of Groups
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2014
SP  - 148
EP  - 180
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2014_21_4_a12/
LA  - ru
ID  - MAIS_2014_21_4_a12
ER  - 
%0 Journal Article
%A E. A. Tumanova
%T On the Root-class Residuality of HNN-extensions of Groups
%J Modelirovanie i analiz informacionnyh sistem
%D 2014
%P 148-180
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2014_21_4_a12/
%G ru
%F MAIS_2014_21_4_a12
E. A. Tumanova. On the Root-class Residuality of HNN-extensions of Groups. Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 4, pp. 148-180. http://geodesic.mathdoc.fr/item/MAIS_2014_21_4_a12/

[1] Azarov D. N., Approksimiruemost svobodnogo proizvedeniya grupp s odnoy obedinennoy podgruppoy nekotorymi klassami konechnykh grupp, Dis. ... kand. fiz.-mat. nauk, Ivanovo, 2000 (in Russian)

[2] Azarov D. N., “On the residual finiteness of $p$-groups”, Chebyshevskii Sb., 11:3 (2010), 11–21 (in Russian) | Zbl

[3] Azarov D. N., “On the virtual residuality of descending HNN-extensions of groups by finite $p$-groups”, Chebyshevskii Sb., 13:1 (2012), 9–19 (in Russian) | MR | Zbl

[4] D. N. Azarov, “On the residual finiteness of the HNN-extensions and generalized free products of finite rank groups”, Sib. Math. J., 54:6 (2013), 959–967 | DOI | MR | Zbl

[5] Azarov D. N., Goltsov D. V., “O pochti approksimiruemosti obobshchennykh svobodnykh proizvedeny i HNN-rasshireny grupp nekotorymi klassami konechnykh grupp”, Vestnik Ivan. gos. un-ta. Ser. “Estestvennye, obshchestvennye nauki”, 2012, no. 2, 86–91 (in Russian)

[6] Azarov D. N., Tieudjo D., “Ob approksimiruemosti svobodnogo proizvedeniya grupp s obedinennoy podgruppoy kornevym klassom grupp”, Nauch. tr. Ivan. gos. un-ta. Matematika, 2002, no. 5, 6–10 (in Russian)

[7] Varlamova I. A., Moldavanskii D. I., “Ob approksimiruemosti konechnymi gruppami grupp Baumslaga–Solitera”, Vestnik Ivan. gos. un-ta. Ser. “Estestvennye, obshchestvennye nauki”, 2012, no. 2, 107–114 (in Russian)

[8] Goltsov D. V., “O pochti approksimiruemosti kornevymi klassami obobshchennykh svobodnykh proizvedeny i HNN-rasshireny grupp”, Chebyshevskii Sb., 14:3 (2013), 34–41 (in Russian)

[9] Gudovshchikova A. S., Sokolov E. V., “Dva zamechaniya o klasse konechnykh razreshimykh $\pi$-grupp”, Vestn. molodykh uchenykh IvGU, 2012, no. 12, 3–4 (in Russian)

[10] Ivanova O. A., Moldavanskii D. I., “Approksimiruemost konechnymi $\pi$-gruppami nekotorykh grupp s odnim opredelyayushchim sootnosheniem”, Nauch. tr. Ivan. gos. un-ta. Matematika, 2008, no. 6, 51–58 (in Russian)

[11] Kopteva A. A., Sokolov E. V., “Nekotorye approksimatsionnye svoystva HNN-rasshireny grupp”, Vestnik Ivan. gos. un-ta. Ser. “Estestvennye, obshchestvennye nauki”, 2013, no. 2, 78–88 (in Russian)

[12] Lyndon R., Schupp P., Combinatorial group theory, Springer-Verlag, 1977, 339 pp. | MR | MR | Zbl

[13] Maltsev A. I., “O gomomorfizmakh na konechnye gruppy”, Uchen. zap. Ivan. gos. ped. in-ta, 18 (1958), 49–60 (in Russian)

[14] Moldavanskii D. I., “Approksimiruemost konechnymi $p$-gruppami nekotorykh HNN-rasshireny grupp”, Vestnik Ivan. gos. un-ta. Ser. “Biologiya, Khimiya, Fizika, Matematika”, 2003, no. 3, 102–116 (in Russian)

[15] Moldavanskii D. I., “Approksimiruemost konechnymi $p$-gruppami HNN-rasshireny”, Vestnik Ivan. gos. un-ta. Ser. “Biologiya, Khimiya, Fizika, Matematika”, 2000, no. 3, 129–140 (in Russian)

[16] Moldavanskii D. I., “Ob approksimiruemosti konechnymi $p$-gruppami HNN-rasshireny nilpotentnykh grupp”, Vestnik Ivan. gos. un-ta. Ser. “Biologiya, Khimiya, Fizika, Matematika”, 2006, no. 3, 128–132 (in Russian)

[17] Moldavanskii D. I., “Finitnaya approksimiruemost nekotorykh HNN-rasshireny grupp”, Vestnik Ivan. gos. un-ta. Ser. “Biologiya, Khimiya, Fizika, Matematika”, 2002, no. 3, 123–133 (in Russian)

[18] Moldavanskii D. I., “Finitnaya approksimiruemost niskhodyashchikh HNN-rasshireny grupp”, Ukr. mat. zhurn., 44:6 (1992), 842–845 (in Russian) | MR

[19] Sokolov E. V., Otdelimost podgrupp nekotorymi klassami konechnykh grupp, LAP Lambert Academic Publishing, 2012, 124 pp. (in Russian)

[20] Tumanova E. A., “Approksimiruemost konechnymi $p$-gruppami HNN-rasshireny grupp”, Vestn. Ivan. gos. un-ta. Ser. “Estestvennye, obshchestvennye nauki”, 2012, no. 2, 139–141 (in Russian)

[21] Tumanova E. A., “Nekotorye dostatochnye usloviya approksimiruemosti obobshchennykh svobodnykh proizvedeny kornevymi klassami grupp”, Nauchno-issledovatelskaya deyatelnost v klassicheskom universitete, IvGU-2013, Sbornik statey po itogam nauchnoy konferentsii (Ivanovo, 28 yanvarya–8 fevralya 2013 g.), IvGU, Ivanovo, 2013, 9–12 (in Russian)

[22] Tumanova E. A., “Ob approksimiruemosti konechnymi $\pi$-gruppami HNN-rasshireny grupp”, Vestn. Ivan. gos. un-ta. Ser. “Estestvennye, obshchestvennye nauki”, 2013, no. 2, 94–102 (in Russian)

[23] E. A. Tumanova, “Certain residually root (class of groups) generalized free products with normal amalgamation”, Algebra and Number Theory: Modern Problems and Application, Proceedings of XII International Conference, dedicated to 80-th anniversary of Professor V. N. Latyshev (Tula, 21–25 April 2014), TSPU, Tula, 2014, 191–193

[24] S. Andreadakis, E. Raptis, D. Varsos, “A characterization of residually finite HNN-extensions of finitely generated Abelian groups”, Arch. Math., 50:6 (1988), 495–501 | DOI | MR | Zbl

[25] S. Andreadakis, E. Raptis, D. Varsos, “Residual finiteness and Hopficity of certain HNN extensions”, Arch. Math., 47 (1986), 1–5 | DOI | MR | Zbl

[26] M. Aschenbrenner, S. Friedl, “A criterion for HNN extensions of finite $p$-groups to be residually $p$”, J. Pure Appl. Algebra, 215:9 (2011), 2280–2289 | DOI | MR | Zbl

[27] B. Baumslag, M. Tretkoff, “Residually finite HNN-extensions”, Comm. Algebra, 6 (1978), 179–194 | DOI | MR | Zbl

[28] G. Baumslag, “On the residual finiteness of generalized free products of nilpotent groups”, Trans. Amer. Math. Soc., 106 (1963), 193–209 | DOI | MR | Zbl

[29] G. Baumslag, D. Solitar, “Some two-generator one-relator non-Hopfian groups”, Bull. Amer. Math. Soc., 68 (1962), 199–201 | DOI | MR | Zbl

[30] A. M. Borisov, M. Sapir, “Polynomial maps over finite fields and residual finiteness of mapping tori of group endomorphisms”, Invent. Math., 160:2 (2005), 341–356 | DOI | MR | Zbl

[31] D. E. Cohen, “Residual finiteness and Britton's lemma”, J. Lond. Math. Soc., 16 (1977), 232–234 | DOI | MR | Zbl

[32] M. R. Dixon, L. A. Kurdachenko, I. Ya. Subbotin, “On various rank conditions in infinite groups”, Algebra and Discrete Mathematics, 2007, no. 4, 23–43 | MR | Zbl

[33] K. W. Gruenberg, “Residual properties of infinite soluble groups”, Proc. Lond. Math. Soc., 7 (1957), 29–62 | DOI | MR | Zbl

[34] T. Hsu, D. Wise, “Ascending HNN extensions of polycyclic groups are residually finite”, J. Pure Appl. Algebra, 182:1 (2003), 65–78 | DOI | MR | Zbl

[35] E. Raptis, D. Varsos, “Residual properties of HNN-extensions with base group an Abelian group”, J. Pure Appl. Algebra, 59:3 (1989), 285–290 | DOI | MR | Zbl

[36] E. Raptis, D. Varsos, “Some residual properties of certain HNN extensions”, Bull. Greek Math. Soc., 28 (1987), 81–87 | MR | Zbl

[37] E. Raptis, D. Varsos, “The residual finiteness of HNN-extensions and generalized free products of nilpotent groups: A characterization”, J. Aust. Math. Soc. Ser. A, 53:3 (1992), 408–420 | DOI | MR | Zbl

[38] E. Raptis, D. Varsos, “The residual nilpotence of HNN-extensions with base group a finite or a f. g. abelian group”, J. Pure Appl. Algebra, 76:2 (1991), 167–178 | DOI | MR | Zbl

[39] A. H. Rhemtulla, M. Shirvani, “The residual finiteness of ascending HNN-extensions of certain soluble groups”, Ill. J. Math., 47:1–2 (2003), 477–484 | MR | Zbl

[40] E. V. Sokolov, A characterization of root classes of groups, arXiv: 1308.1039v1[math.GR] | MR

[41] D. Tieudjo, “On root-class residuality of some free constructions”, JP Journal of Algebra, Number Theory and applications, 18:2 (2010), 125–143 | MR | Zbl

[42] D. Varsos, “The residual nilpotence of the fundamental group of certain graphs of groups”, Houston J. Math., 22:2 (1996), 233–248 | MR | Zbl