Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2014_21_4_a12, author = {E. A. Tumanova}, title = {On the {Root-class} {Residuality} of {HNN-extensions} of {Groups}}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {148--180}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2014_21_4_a12/} }
E. A. Tumanova. On the Root-class Residuality of HNN-extensions of Groups. Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 4, pp. 148-180. http://geodesic.mathdoc.fr/item/MAIS_2014_21_4_a12/
[1] Azarov D. N., Approksimiruemost svobodnogo proizvedeniya grupp s odnoy obedinennoy podgruppoy nekotorymi klassami konechnykh grupp, Dis. ... kand. fiz.-mat. nauk, Ivanovo, 2000 (in Russian)
[2] Azarov D. N., “On the residual finiteness of $p$-groups”, Chebyshevskii Sb., 11:3 (2010), 11–21 (in Russian) | Zbl
[3] Azarov D. N., “On the virtual residuality of descending HNN-extensions of groups by finite $p$-groups”, Chebyshevskii Sb., 13:1 (2012), 9–19 (in Russian) | MR | Zbl
[4] D. N. Azarov, “On the residual finiteness of the HNN-extensions and generalized free products of finite rank groups”, Sib. Math. J., 54:6 (2013), 959–967 | DOI | MR | Zbl
[5] Azarov D. N., Goltsov D. V., “O pochti approksimiruemosti obobshchennykh svobodnykh proizvedeny i HNN-rasshireny grupp nekotorymi klassami konechnykh grupp”, Vestnik Ivan. gos. un-ta. Ser. “Estestvennye, obshchestvennye nauki”, 2012, no. 2, 86–91 (in Russian)
[6] Azarov D. N., Tieudjo D., “Ob approksimiruemosti svobodnogo proizvedeniya grupp s obedinennoy podgruppoy kornevym klassom grupp”, Nauch. tr. Ivan. gos. un-ta. Matematika, 2002, no. 5, 6–10 (in Russian)
[7] Varlamova I. A., Moldavanskii D. I., “Ob approksimiruemosti konechnymi gruppami grupp Baumslaga–Solitera”, Vestnik Ivan. gos. un-ta. Ser. “Estestvennye, obshchestvennye nauki”, 2012, no. 2, 107–114 (in Russian)
[8] Goltsov D. V., “O pochti approksimiruemosti kornevymi klassami obobshchennykh svobodnykh proizvedeny i HNN-rasshireny grupp”, Chebyshevskii Sb., 14:3 (2013), 34–41 (in Russian)
[9] Gudovshchikova A. S., Sokolov E. V., “Dva zamechaniya o klasse konechnykh razreshimykh $\pi$-grupp”, Vestn. molodykh uchenykh IvGU, 2012, no. 12, 3–4 (in Russian)
[10] Ivanova O. A., Moldavanskii D. I., “Approksimiruemost konechnymi $\pi$-gruppami nekotorykh grupp s odnim opredelyayushchim sootnosheniem”, Nauch. tr. Ivan. gos. un-ta. Matematika, 2008, no. 6, 51–58 (in Russian)
[11] Kopteva A. A., Sokolov E. V., “Nekotorye approksimatsionnye svoystva HNN-rasshireny grupp”, Vestnik Ivan. gos. un-ta. Ser. “Estestvennye, obshchestvennye nauki”, 2013, no. 2, 78–88 (in Russian)
[12] Lyndon R., Schupp P., Combinatorial group theory, Springer-Verlag, 1977, 339 pp. | MR | MR | Zbl
[13] Maltsev A. I., “O gomomorfizmakh na konechnye gruppy”, Uchen. zap. Ivan. gos. ped. in-ta, 18 (1958), 49–60 (in Russian)
[14] Moldavanskii D. I., “Approksimiruemost konechnymi $p$-gruppami nekotorykh HNN-rasshireny grupp”, Vestnik Ivan. gos. un-ta. Ser. “Biologiya, Khimiya, Fizika, Matematika”, 2003, no. 3, 102–116 (in Russian)
[15] Moldavanskii D. I., “Approksimiruemost konechnymi $p$-gruppami HNN-rasshireny”, Vestnik Ivan. gos. un-ta. Ser. “Biologiya, Khimiya, Fizika, Matematika”, 2000, no. 3, 129–140 (in Russian)
[16] Moldavanskii D. I., “Ob approksimiruemosti konechnymi $p$-gruppami HNN-rasshireny nilpotentnykh grupp”, Vestnik Ivan. gos. un-ta. Ser. “Biologiya, Khimiya, Fizika, Matematika”, 2006, no. 3, 128–132 (in Russian)
[17] Moldavanskii D. I., “Finitnaya approksimiruemost nekotorykh HNN-rasshireny grupp”, Vestnik Ivan. gos. un-ta. Ser. “Biologiya, Khimiya, Fizika, Matematika”, 2002, no. 3, 123–133 (in Russian)
[18] Moldavanskii D. I., “Finitnaya approksimiruemost niskhodyashchikh HNN-rasshireny grupp”, Ukr. mat. zhurn., 44:6 (1992), 842–845 (in Russian) | MR
[19] Sokolov E. V., Otdelimost podgrupp nekotorymi klassami konechnykh grupp, LAP Lambert Academic Publishing, 2012, 124 pp. (in Russian)
[20] Tumanova E. A., “Approksimiruemost konechnymi $p$-gruppami HNN-rasshireny grupp”, Vestn. Ivan. gos. un-ta. Ser. “Estestvennye, obshchestvennye nauki”, 2012, no. 2, 139–141 (in Russian)
[21] Tumanova E. A., “Nekotorye dostatochnye usloviya approksimiruemosti obobshchennykh svobodnykh proizvedeny kornevymi klassami grupp”, Nauchno-issledovatelskaya deyatelnost v klassicheskom universitete, IvGU-2013, Sbornik statey po itogam nauchnoy konferentsii (Ivanovo, 28 yanvarya–8 fevralya 2013 g.), IvGU, Ivanovo, 2013, 9–12 (in Russian)
[22] Tumanova E. A., “Ob approksimiruemosti konechnymi $\pi$-gruppami HNN-rasshireny grupp”, Vestn. Ivan. gos. un-ta. Ser. “Estestvennye, obshchestvennye nauki”, 2013, no. 2, 94–102 (in Russian)
[23] E. A. Tumanova, “Certain residually root (class of groups) generalized free products with normal amalgamation”, Algebra and Number Theory: Modern Problems and Application, Proceedings of XII International Conference, dedicated to 80-th anniversary of Professor V. N. Latyshev (Tula, 21–25 April 2014), TSPU, Tula, 2014, 191–193
[24] S. Andreadakis, E. Raptis, D. Varsos, “A characterization of residually finite HNN-extensions of finitely generated Abelian groups”, Arch. Math., 50:6 (1988), 495–501 | DOI | MR | Zbl
[25] S. Andreadakis, E. Raptis, D. Varsos, “Residual finiteness and Hopficity of certain HNN extensions”, Arch. Math., 47 (1986), 1–5 | DOI | MR | Zbl
[26] M. Aschenbrenner, S. Friedl, “A criterion for HNN extensions of finite $p$-groups to be residually $p$”, J. Pure Appl. Algebra, 215:9 (2011), 2280–2289 | DOI | MR | Zbl
[27] B. Baumslag, M. Tretkoff, “Residually finite HNN-extensions”, Comm. Algebra, 6 (1978), 179–194 | DOI | MR | Zbl
[28] G. Baumslag, “On the residual finiteness of generalized free products of nilpotent groups”, Trans. Amer. Math. Soc., 106 (1963), 193–209 | DOI | MR | Zbl
[29] G. Baumslag, D. Solitar, “Some two-generator one-relator non-Hopfian groups”, Bull. Amer. Math. Soc., 68 (1962), 199–201 | DOI | MR | Zbl
[30] A. M. Borisov, M. Sapir, “Polynomial maps over finite fields and residual finiteness of mapping tori of group endomorphisms”, Invent. Math., 160:2 (2005), 341–356 | DOI | MR | Zbl
[31] D. E. Cohen, “Residual finiteness and Britton's lemma”, J. Lond. Math. Soc., 16 (1977), 232–234 | DOI | MR | Zbl
[32] M. R. Dixon, L. A. Kurdachenko, I. Ya. Subbotin, “On various rank conditions in infinite groups”, Algebra and Discrete Mathematics, 2007, no. 4, 23–43 | MR | Zbl
[33] K. W. Gruenberg, “Residual properties of infinite soluble groups”, Proc. Lond. Math. Soc., 7 (1957), 29–62 | DOI | MR | Zbl
[34] T. Hsu, D. Wise, “Ascending HNN extensions of polycyclic groups are residually finite”, J. Pure Appl. Algebra, 182:1 (2003), 65–78 | DOI | MR | Zbl
[35] E. Raptis, D. Varsos, “Residual properties of HNN-extensions with base group an Abelian group”, J. Pure Appl. Algebra, 59:3 (1989), 285–290 | DOI | MR | Zbl
[36] E. Raptis, D. Varsos, “Some residual properties of certain HNN extensions”, Bull. Greek Math. Soc., 28 (1987), 81–87 | MR | Zbl
[37] E. Raptis, D. Varsos, “The residual finiteness of HNN-extensions and generalized free products of nilpotent groups: A characterization”, J. Aust. Math. Soc. Ser. A, 53:3 (1992), 408–420 | DOI | MR | Zbl
[38] E. Raptis, D. Varsos, “The residual nilpotence of HNN-extensions with base group a finite or a f. g. abelian group”, J. Pure Appl. Algebra, 76:2 (1991), 167–178 | DOI | MR | Zbl
[39] A. H. Rhemtulla, M. Shirvani, “The residual finiteness of ascending HNN-extensions of certain soluble groups”, Ill. J. Math., 47:1–2 (2003), 477–484 | MR | Zbl
[40] E. V. Sokolov, A characterization of root classes of groups, arXiv: 1308.1039v1[math.GR] | MR
[41] D. Tieudjo, “On root-class residuality of some free constructions”, JP Journal of Algebra, Number Theory and applications, 18:2 (2010), 125–143 | MR | Zbl
[42] D. Varsos, “The residual nilpotence of the fundamental group of certain graphs of groups”, Houston J. Math., 22:2 (1996), 233–248 | MR | Zbl