Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2014_21_4_a11, author = {A. V. Smirnov}, title = {Heuristic {Algorithms} for {The} {Problem} of {Integer} {Balancing} of a {Three-dimensional} {Matrix} with {Constraints} of {Second} {Type}}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {132--147}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2014_21_4_a11/} }
TY - JOUR AU - A. V. Smirnov TI - Heuristic Algorithms for The Problem of Integer Balancing of a Three-dimensional Matrix with Constraints of Second Type JO - Modelirovanie i analiz informacionnyh sistem PY - 2014 SP - 132 EP - 147 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2014_21_4_a11/ LA - ru ID - MAIS_2014_21_4_a11 ER -
%0 Journal Article %A A. V. Smirnov %T Heuristic Algorithms for The Problem of Integer Balancing of a Three-dimensional Matrix with Constraints of Second Type %J Modelirovanie i analiz informacionnyh sistem %D 2014 %P 132-147 %V 21 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2014_21_4_a11/ %G ru %F MAIS_2014_21_4_a11
A. V. Smirnov. Heuristic Algorithms for The Problem of Integer Balancing of a Three-dimensional Matrix with Constraints of Second Type. Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 4, pp. 132-147. http://geodesic.mathdoc.fr/item/MAIS_2014_21_4_a11/
[1] V. S. Roublev, A. V. Smirnov, “$NP$-Completeness of the Integer Balancing Problem for a Three-Dimensional Matrix”, Doklady Mathematics, 82:3 (2010), 912–914 | DOI | MR | Zbl
[2] Roublev V. S., Smirnov A. V., “The Problem of Integer-Valued Balancing of a Three-Dimensional Matrix and Algorithms of Its Solution”, MAIS, 17:2 (2010), 72–98 (in Russian)
[3] Smirnov A. V., “The Problem of Integer-valued Balancing of a Three-dimensional Matrix and Network Model”, MAIS, 16:3 (2010), 70–76 (in Russian)
[4] Smirnov A. V., “Some Solvability Classes for The Problem of Integer Balancing of a Three-dimensional Matrix with Constraints of Second Type”, MAIS, 20:2 (2013), 54–69 (in Russian)
[5] Smirnov A. V., “Zadacha tselochislennogo sbalansirovaniya tryokhmernoy matritsy s ogranicheniyami vtorogo roda”, Modelirovanie i analiz informatsionnykh sistem, Trudy mezhdunarodnoy nauchnoy konferentsii, posvyashchyonnoy 35-letiyu matematicheskogo fakulteta i 25-letiyu fakulteta informatiki i vychislitelnoy tekhniki Yaroslavskogo gosudarstvennogo universiteta im. P. G. Demidova (Yaroslavl, 2012), 164–167 (in Russian)
[6] Rublev V. S., Smirnov A. V., “Flows in Multiple Networks”, Yaroslavsky Pedagogichesky Vestnik, 3:2 (2011), 60–68 (in Russian)
[7] Kondakov A. S., Roublev V. S., “Zadacha sbalansirovaniya matritsy plana”, Doklady Odesskogo seminara po diskretnoy matematike, 2, Astroprint, Odessa, 2005, 24–26 (in Russian)
[8] Korshunova N. M., Roublev V. S., “Zadacha tselochislennogo sbalansirovaniya matritsy”, Sovremennye problemy matematiki i informatiki, 3, Yaroslavl, 2000, 145–150 (in Russian)
[9] L. R. Ford, D. R. Fulkerson, Flows in Networks, Princeton University Press, 1962, 194 pp. | MR | Zbl | Zbl
[10] Roublev V. S., Smirnov A. V., “Zadacha optimalnogo okrugleniya plana valyutnykh schetov”, Kibernetika i vysokie tekhnologii XXI veka, v. 1, NPF “SAKVOEE”, Voronezh, 2008, 112–123 (in Russian)
[11] Mikhaylov G. A., Voytishek A. V., Chislennoe statisticheskoe modelirovanie. Metody Monte-Karlo, Akademiya, M., 2006, 368 pp. (in Russian)