Approximate Solution of an Optimal Control Dot Mobile Problem for~a~Nonlinear Hyperbolic Equation
Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 3, pp. 106-120

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we consider the approximate solution of an optimal control dot mobile problem for a system of nonlinear partial hyperbolic and ordinary differential equations with initial and boundary value conditions and a nonlinear optimality criterion. The use of the Fourier method of variables separation reduces the generalized solution of the initial-boundary value problem to the countable system of nonlinear integral \linebreak equations (CSNIE). To ease the computational procedures, it is considered the corresponding shorter (truncated) system of nonlinear integral equations (SSNIE) instead of CSNIE. By the methods of successive approximations and integral inequalities, it is studied the one-value solvability of SSNIE for the fixed values of the control. It is estimated a permissible error with respect to the shorter generalized solution of the initial-boundary value problem. It is approximately calculated the nonlinear functional of quality under the known optimal operating influences.
Keywords: hyperbolic equation, initial and boundary value conditions, dot mobile optimal control, generalized solvability, functional minimization, approximate solution.
@article{MAIS_2014_21_3_a6,
     author = {T. K. Yuldashev},
     title = {Approximate {Solution} of an {Optimal} {Control} {Dot} {Mobile} {Problem} {for~a~Nonlinear} {Hyperbolic} {Equation}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {106--120},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2014_21_3_a6/}
}
TY  - JOUR
AU  - T. K. Yuldashev
TI  - Approximate Solution of an Optimal Control Dot Mobile Problem for~a~Nonlinear Hyperbolic Equation
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2014
SP  - 106
EP  - 120
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2014_21_3_a6/
LA  - ru
ID  - MAIS_2014_21_3_a6
ER  - 
%0 Journal Article
%A T. K. Yuldashev
%T Approximate Solution of an Optimal Control Dot Mobile Problem for~a~Nonlinear Hyperbolic Equation
%J Modelirovanie i analiz informacionnyh sistem
%D 2014
%P 106-120
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2014_21_3_a6/
%G ru
%F MAIS_2014_21_3_a6
T. K. Yuldashev. Approximate Solution of an Optimal Control Dot Mobile Problem for~a~Nonlinear Hyperbolic Equation. Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 3, pp. 106-120. http://geodesic.mathdoc.fr/item/MAIS_2014_21_3_a6/