Approximate Solution of an Optimal Control Dot Mobile Problem for~a~Nonlinear Hyperbolic Equation
Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 3, pp. 106-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we consider the approximate solution of an optimal control dot mobile problem for a system of nonlinear partial hyperbolic and ordinary differential equations with initial and boundary value conditions and a nonlinear optimality criterion. The use of the Fourier method of variables separation reduces the generalized solution of the initial-boundary value problem to the countable system of nonlinear integral \linebreak equations (CSNIE). To ease the computational procedures, it is considered the corresponding shorter (truncated) system of nonlinear integral equations (SSNIE) instead of CSNIE. By the methods of successive approximations and integral inequalities, it is studied the one-value solvability of SSNIE for the fixed values of the control. It is estimated a permissible error with respect to the shorter generalized solution of the initial-boundary value problem. It is approximately calculated the nonlinear functional of quality under the known optimal operating influences.
Keywords: hyperbolic equation, initial and boundary value conditions, dot mobile optimal control, generalized solvability, functional minimization, approximate solution.
@article{MAIS_2014_21_3_a6,
     author = {T. K. Yuldashev},
     title = {Approximate {Solution} of an {Optimal} {Control} {Dot} {Mobile} {Problem} {for~a~Nonlinear} {Hyperbolic} {Equation}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {106--120},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2014_21_3_a6/}
}
TY  - JOUR
AU  - T. K. Yuldashev
TI  - Approximate Solution of an Optimal Control Dot Mobile Problem for~a~Nonlinear Hyperbolic Equation
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2014
SP  - 106
EP  - 120
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2014_21_3_a6/
LA  - ru
ID  - MAIS_2014_21_3_a6
ER  - 
%0 Journal Article
%A T. K. Yuldashev
%T Approximate Solution of an Optimal Control Dot Mobile Problem for~a~Nonlinear Hyperbolic Equation
%J Modelirovanie i analiz informacionnyh sistem
%D 2014
%P 106-120
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2014_21_3_a6/
%G ru
%F MAIS_2014_21_3_a6
T. K. Yuldashev. Approximate Solution of an Optimal Control Dot Mobile Problem for~a~Nonlinear Hyperbolic Equation. Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 3, pp. 106-120. http://geodesic.mathdoc.fr/item/MAIS_2014_21_3_a6/

[1] Aleksandrov A. G., Optimalnye i adaptivnye sistemy, Vysshaya shkola, M., 1989 (in Russian)

[2] Andreev Yu. N., Upravlenie konechnomernymi lineynymi obektami, Nauka, M., 1976 (in Russian) | MR

[3] Vyazgin V. A., Fedorov V. V., Matematicheskie metody avtomatizirovannogo proektirovaniya, Vysshaya shkola, M., 1989 (in Russian) | MR | Zbl

[4] Krotov V. F., Gurman V. I., Metody i zadachi optimalnogo upravleniya, Nauka, M., 1973 (in Russian) | MR | Zbl

[5] Kuropatkin P. V., Optimalnye i adaptivnye upravleniya, Nauka, M., 1980 (in Russian)

[6] Butkovski A. G., Teoriya optimalnogo upravleniya sistemami s raspredelyonnymi parametrami, Nauka, M., 1965 (in Russian) | MR

[7] Evtushenko Yu. G., Metody resheniya ekstremalnykh zadach i ih primenenie v sistemah optimizatsii, Nauka, M., 1982 (in Russian) | MR | Zbl

[8] Egorov A. I., Optimalnoe upravlenie teplovymi i diffuzionnymi protsessami, Nauka, M., 1978 (in Russian) | MR

[9] J. L. Lions, Controle de systemes distribues singuliers, Gauthier-Villars, Paris, 1983 | MR | MR | Zbl

[10] Lur'e K. A., Optimalnoe upravlenie v zadachah matematicheskoy fiziki, Nauka, M., 1975 (in Russian) | MR

[11] Rapoport E. Ya., Optimalnoe upravlenie sistemami s raspredelyonnymi parametrami, Vysshaya shkola, M., 2009 (in Russian)

[12] Srochko V. A., Iteratsionnye metody recheniya zadach optimalnogo upravleniya, Fizmatlit, M., 2000 (in Russian)

[13] Tyatyushkin A. I., Chislennye metody i programmnye sredstva optimizatsii upravlyaemykh sistem, Nauka, M., 1992 (in Russian) | MR | Zbl

[14] Fedorenko R. P., Priblijyonnoe reshenie zadach optimalnogo upravleniya, Nauka, M., 1978 (in Russian) | MR | Zbl

[15] T. K. Yuldashev, “Mixed value problem for nonlinear differential equation of fourth order with small parameter on the parabolic operator”, Comput. Math. and Math. Physics, 51:9 (2011), 1596–1604 | DOI | MR | Zbl

[16] T. K. Yuldashev, “Mixed value problem for nonlinear integro-differential equation with parabolic operator of higher power”, Comput. Math. and Math. Physics, 52:1 (2012), 105–116 | DOI | MR | Zbl

[17] Yuldashev T. K., “Smeshannaya zadacha dlya nelineynogo uravneniya s pseudoparabolicheskim operatorom vysokoy stepeni”, Vestnik VoronezhGU, 2013, no. 2, 277–295 (in Russian)

[18] Yuldashev T. K., “On a Problem of Optimal Control for a Nonlinear Pseudohyperbolic Equation”, Modeling and analysis of information systems, 20:5 (2013), 78–89 (in Russian)

[19] Shabadikov K. H., Yuldashev T. K., “Issledovaniya razreshimosti smeshannoy zadachi dlya nelineynykh integro-differentsialnykh uravneniy s maksimumami po vremeni”, Issledovaniya po integro-differentsialnym uravneniyam, 23 (1991), 28–34 (in Russian)