Stability of CW Solutions of the FDML Laser
Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 3, pp. 35-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of existense and stability of continuous wave (CW) solutions $R\exp(i\Lambda t)$ of a Fourier Domain Mode Locking laser model is studied. This model consists of two differential equations with delay. The delay is sufficiently large. It is nessesary for the existense of CW solutions of this model that parameters determining the "main part" of solution must lie on a certain curve ($\Gamma(\kappa,g_0)$). Sufficient conditions of stability of CW solutions for all sufficiently large values of delay are found. The location of stability regions on $\Gamma(\kappa,g_0)$ is studied. In the case of zero linewidth enhancement factor $\alpha$ for all values of parameters of the linear attenuation factor per cavity round trip $\kappa$ and the linear unsaturated gain parameter $g_0$ the number of stability regions and their boundaries on $\Gamma(\kappa,g_0)$ are found analytically. The comparison of location of stability regions on $\Gamma(\kappa,g_0)$ in tha case of zero $\alpha$ and nonzero $\alpha$ is made.
Mots-clés : FDML laser
Keywords: small parameter, large delay, stability, continuous wave.
@article{MAIS_2014_21_3_a1,
     author = {A. A. Kashchenko},
     title = {Stability of {CW} {Solutions} of the {FDML} {Laser}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {35--54},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2014_21_3_a1/}
}
TY  - JOUR
AU  - A. A. Kashchenko
TI  - Stability of CW Solutions of the FDML Laser
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2014
SP  - 35
EP  - 54
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2014_21_3_a1/
LA  - ru
ID  - MAIS_2014_21_3_a1
ER  - 
%0 Journal Article
%A A. A. Kashchenko
%T Stability of CW Solutions of the FDML Laser
%J Modelirovanie i analiz informacionnyh sistem
%D 2014
%P 35-54
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2014_21_3_a1/
%G ru
%F MAIS_2014_21_3_a1
A. A. Kashchenko. Stability of CW Solutions of the FDML Laser. Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 3, pp. 35-54. http://geodesic.mathdoc.fr/item/MAIS_2014_21_3_a1/

[1] S. Slepneva, B. Kelleher, B. O'Shaughnessy, S. P. Hegarty, A. G. Vladimirov, G. Huyet, “Dynamics of Fourier domain mode-locked lasers”, Opt. Express, 21 (2013), 19240–19251 | DOI

[2] R. Huber, M. Wojtkowski, J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography”, Opt. Express, 14 (2006), 3225–3237 | DOI

[3] A. G. Vladimirov, D. Turaev, “Model for passive mode-locking in semiconductor lasers”, Phys. Rev. A, 72 (2005), 033808 | DOI

[4] A. Vladimirov, D. Turaev, G. Kozyreff, “Delay differential equations for mode-locked semiconductor lasers”, Opt. Lett., 29 (2004), 1221–1223 | DOI

[5] A. Vladimirov, D. Turaev, “A new model for a mode-locked semiconductor laser”, Radiophysics and Quantum Electronics, 47 (2004), 769–776 | DOI

[6] A. Kashchenko, “Stability of CW Solutions of Fourier Domain Mode Locked Laser”, International Student Conference “Science and Progress”, 2013, 29

[7] A. A. Kashchenko, “Stability of the Simplest Periodic Solutions in the Stuart–Landau Equation with Large Delay”, Automatic Control and Computer Sciences, 47:7 (2013), 566–570 | DOI

[8] Vasil'eva A. B., Butuzov V. F., Asimptoticheskie razlozheniya resheniy singulyarno vozmushchennykh uravneniy, Nauka, M., 1973 (In Russian) | MR | Zbl