Center Manifold Method in the Asymptotic Integration Problem for Functional Differential Equations with Oscillatory Decreasing Coefficients.~I
Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 3, pp. 5-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the asymptotic integration problem in the neighborhood of infinity for a certain class of linear functional differential systems. We construct the asymptotics for solutions of the considered systems in the critical case. Using the ideas of the center manifold method, we show the existence of the so-called critical manifold that is positively invariant for trajectories of the initial system. We establish that the asymptotics for solutions of the system on this manifold defines the asymptotics for all solutions of the initial system. In the first part of this work, we propose an algorithm for an approximate construction of the critical manifold. Moreover, we establish the unique solvability for auxiliary algebraic problems that occur within the algorithm implementation.
Keywords: functional-differential equations, critical manifold, asymptotic integration.
@article{MAIS_2014_21_3_a0,
     author = {P. N. Nesterov},
     title = {Center {Manifold} {Method} in the {Asymptotic} {Integration} {Problem} for {Functional} {Differential} {Equations} with {Oscillatory} {Decreasing} {Coefficients.~I}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {5--34},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2014_21_3_a0/}
}
TY  - JOUR
AU  - P. N. Nesterov
TI  - Center Manifold Method in the Asymptotic Integration Problem for Functional Differential Equations with Oscillatory Decreasing Coefficients.~I
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2014
SP  - 5
EP  - 34
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2014_21_3_a0/
LA  - ru
ID  - MAIS_2014_21_3_a0
ER  - 
%0 Journal Article
%A P. N. Nesterov
%T Center Manifold Method in the Asymptotic Integration Problem for Functional Differential Equations with Oscillatory Decreasing Coefficients.~I
%J Modelirovanie i analiz informacionnyh sistem
%D 2014
%P 5-34
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2014_21_3_a0/
%G ru
%F MAIS_2014_21_3_a0
P. N. Nesterov. Center Manifold Method in the Asymptotic Integration Problem for Functional Differential Equations with Oscillatory Decreasing Coefficients.~I. Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 3, pp. 5-34. http://geodesic.mathdoc.fr/item/MAIS_2014_21_3_a0/

[1] R. Bellman, K. L. Cooke, Differential-Difference equations, Academic Press, New York, 1963 | MR | MR | Zbl

[2] Nesterov P. N., “Asimptoticheskoe integrirovanie odnogo klassa sistem funktsional'no-differentsial'nykh uravneniy”, Vestnik Nizhegorodskogo universiteta imeni N. I. Lobachevskogo, 2013, no. 1(3), 137–145 (in Russian) | MR

[3] P. N. Nesterov, “Averaging method in the asymptotic integration problem for systems with oscillatory-decreasing coefficients”, Differ. Equ., 43:6 (2007), 745–756 | DOI | MR | Zbl

[4] P. N. Nesterov, “On asymptotics for critical solutions of systems of differential equations with oscillatory decreasing coefficients”, Automatic Control and Computer Sciences, 47:7 (2013), 500–515 | DOI | MR

[5] J. K. Hale, Springer-Verlag, New York, 1977 | MR | Zbl

[6] S. Ai, “Asymptotic integration of delay differential systems”, J. Math. Anal. Appl., 165 (1992), 71–101 | DOI | MR | Zbl

[7] M. Ait Babram, M. L. Hbid, O. Arino, “Approximation scheme of a center manifold for functional differential equations”, J. Math. Anal. Appl., 213 (1997), 554–572 | DOI | MR | Zbl

[8] O. Arino, I. Győri, “Asymptotic integration of delay differential systems”, J. Math. Anal. Appl., 138 (1989), 311–327 | DOI | MR | Zbl

[9] O. Arino, I. Győri, M. Pituk, “Asymptotically diagonal delay differential systems”, J. Math. Anal. Appl., 204 (1996), 701–728 | DOI | MR | Zbl

[10] Delay differential equations and applications, eds. O. Arino, M. L. Hbid, E. Ait Dads, Springer, Dordrecht, 2006 | MR

[11] Delay differential equations: recent advances and new directions, eds. B. Balachandran, T. Kalmár-Nagy, D. E. Gilsinn, Springer, New York, 2009 | MR

[12] I. Győri, M. Pituk, “$L^2$-Perturbation of a linear delay differential equation”, J. Math. Anal. Appl., 195 (1995), 415–427 | DOI | MR | Zbl

[13] J. Carr, Applications of centre manifold theory, Springer-Verlag, New York, 1981 | MR | Zbl

[14] J. S. Cassel, Z. Hou, “$L^p$-Perturbation of linear functional differential equations”, Monatsh. Math., 128 (1999), 211–226 | DOI | MR | Zbl

[15] S. Castillo, M. Pinto, “Levinson theorem for functional differential systems”, Nonlinear Anal., 47 (2001), 3963–3975 | DOI | MR | Zbl

[16] S. Castillo, M. Pinto, “An asymptotic theory for nonlinear functional differential equations”, Comput. Math. Appl., 44 (2002), 763–775 | DOI | MR | Zbl

[17] J. Hale, S. M. Verduyn Lunel, Introduction to functional differential equations, Appl. Math. Sciences, 99, Springer-Verlag, New York, 1993 | DOI | MR | Zbl

[18] V. Kolmanovskii, A. Myshkis, Introduction to the theory and applications of functional differential equations, Kluwer Academic Publishers, Dordrecht, 1999 | MR | Zbl

[19] P. Nesterov, “Asymptotic integration of functional differential systems with oscillatory decreasing coefficients”, Monatsh. Math., 171:2 (2013), 217–240 | DOI | MR | Zbl

[20] M. Pituk, “The Hartman–Wintner theorem for functional differential equations”, J. Differential Equations, 155 (1999), 1–16 | DOI | MR | Zbl

[21] M. Pituk, “A Perron type theorem for functional differential equations”, J. Math. Anal. Appl., 316 (2006), 24–41 | DOI | MR | Zbl

[22] M. Pituk, “Asymptotic behavior and oscillation of functional differential equations”, J. Math. Anal. Appl., 322 (2006), 1140–1158 | DOI | MR | Zbl