Non-Classical Relaxation Oscillations in Neurodynamics
Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 2, pp. 71-89

Voir la notice de l'article provenant de la source Math-Net.Ru

A modification of the well-known FitzHugh–Nagumo model from neuroscience is proposed. This model is a singularly perturbed system of ordinary differential equations with a fast variable and a slow one. The existence and stability of a nonclassical relaxation cycle in this system are studied. The slow component of the cycle is asymptotically close to a discontinuous function, while the fast component is a $\delta$-like function. A one-dimensional circle of unidirectionally coupled neurons is considered. It is shown the existence of an arbitrarily large number of traveling waves for this chain. In order to illustrate the increasing of the number of stable traveling waves numerical methods were involved.
Mots-clés : impuls neuron
Keywords: FitzHugh–Nagumo model, relaxation cycle, asymptotics, stability, buffering.
@article{MAIS_2014_21_2_a6,
     author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
     title = {Non-Classical {Relaxation} {Oscillations} in {Neurodynamics}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {71--89},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2014_21_2_a6/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - Non-Classical Relaxation Oscillations in Neurodynamics
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2014
SP  - 71
EP  - 89
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2014_21_2_a6/
LA  - ru
ID  - MAIS_2014_21_2_a6
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T Non-Classical Relaxation Oscillations in Neurodynamics
%J Modelirovanie i analiz informacionnyh sistem
%D 2014
%P 71-89
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2014_21_2_a6/
%G ru
%F MAIS_2014_21_2_a6
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. Non-Classical Relaxation Oscillations in Neurodynamics. Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 2, pp. 71-89. http://geodesic.mathdoc.fr/item/MAIS_2014_21_2_a6/