Asymmetric Interaction of a Pair FitzHugh--Nagumo Oscillators
Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 1, pp. 115-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

A pair of diffusion connected FitzHugh–Nagumo oscillators with an asymmetric interaction are considered. The problem is investigated in the close to critical case, where the matrix of the linear part of the system has a pair of purely imaginary eigenvalues. The normal form is constructed and its coefficients are determined depending on the initial parameters. The source system may be in two different situations: stable single-frequency oscillations with two different frequencies coexist or a single-frequency mode branches from the equilibrium. The obtained asymptotic results are supplemented by the numerical analysis.
Keywords: FitzHugh–Nagumo equation, connected oscillators, normal form
Mots-clés : diffusion interaction, bifurcation.
@article{MAIS_2014_21_1_a8,
     author = {E. A. Marushkina},
     title = {Asymmetric {Interaction} of a {Pair} {FitzHugh--Nagumo} {Oscillators}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {115--120},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2014_21_1_a8/}
}
TY  - JOUR
AU  - E. A. Marushkina
TI  - Asymmetric Interaction of a Pair FitzHugh--Nagumo Oscillators
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2014
SP  - 115
EP  - 120
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2014_21_1_a8/
LA  - ru
ID  - MAIS_2014_21_1_a8
ER  - 
%0 Journal Article
%A E. A. Marushkina
%T Asymmetric Interaction of a Pair FitzHugh--Nagumo Oscillators
%J Modelirovanie i analiz informacionnyh sistem
%D 2014
%P 115-120
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2014_21_1_a8/
%G ru
%F MAIS_2014_21_1_a8
E. A. Marushkina. Asymmetric Interaction of a Pair FitzHugh--Nagumo Oscillators. Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 1, pp. 115-120. http://geodesic.mathdoc.fr/item/MAIS_2014_21_1_a8/

[1] A. L. Hodgkin, A. F. Huxley, “A quantitative description of membrane current and application to conduction and excitation in nerve”, Journal Physiol., 117 (1952), 500–544

[2] R. FitzHugh, “Threshold and plateaus in the Hodgkin-Huxley nerve equations”, J. Generical Physiology, 43 (1960), 867–896 | DOI

[3] J. Nagumo, S. Arimoto, S. Youshizawa, “An active pulse transmission line simulating nerve axon”, Proc. IRE, 50 (1962), 2061–2070 | DOI

[4] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “On a Modification of the FitzHugh–Nagumo Neuron Model”, Computational Mathematics and Mathematical Physics, 54:3 (2014), 443–461 | DOI | DOI | MR

[5] E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, MIT Press, Cambridge, Mass., 2007 | MR

[6] Glyzin S. D., Kolesov A. Yu., Lokalnye metody analiza dinamicheskikh sistem, uchebnoe posobie, YarGU, Yaroslavl, 2006, 92 pp. (in Russian)