Asymptotics of a Steady-State Condition of Finite-Difference Approximation of a Logistic Equation with Delay and Small Diffusion
Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 1, pp. 94-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the dynamics of finite-difference approximation on spatial variables of a logistic equation with delay and diffusion. It is assumed that the diffusion coefficient is small and the Malthusian coefficient is large. The question of the existence and asymptotic behavior of attractors was studied with special asymptotic methods. It is shown that there is a rich array of different types of attractors in the phase space: leading centers, spiral waves, etc. The main asymptotic characteristics of all solutions from the corresponding attractors are adduced in this work. Typical graphics of wave fronts motion of different structures are represented in the article.
Keywords: logistic equation, attractor, guiding center, helicon waves, asymptotics, stability.
@article{MAIS_2014_21_1_a7,
     author = {S. A. Kaschenko and V. E. Frolov},
     title = {Asymptotics of a {Steady-State} {Condition} of {Finite-Difference} {Approximation} of a {Logistic} {Equation} with {Delay} and {Small} {Diffusion}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {94--114},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2014_21_1_a7/}
}
TY  - JOUR
AU  - S. A. Kaschenko
AU  - V. E. Frolov
TI  - Asymptotics of a Steady-State Condition of Finite-Difference Approximation of a Logistic Equation with Delay and Small Diffusion
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2014
SP  - 94
EP  - 114
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2014_21_1_a7/
LA  - ru
ID  - MAIS_2014_21_1_a7
ER  - 
%0 Journal Article
%A S. A. Kaschenko
%A V. E. Frolov
%T Asymptotics of a Steady-State Condition of Finite-Difference Approximation of a Logistic Equation with Delay and Small Diffusion
%J Modelirovanie i analiz informacionnyh sistem
%D 2014
%P 94-114
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2014_21_1_a7/
%G ru
%F MAIS_2014_21_1_a7
S. A. Kaschenko; V. E. Frolov. Asymptotics of a Steady-State Condition of Finite-Difference Approximation of a Logistic Equation with Delay and Small Diffusion. Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 1, pp. 94-114. http://geodesic.mathdoc.fr/item/MAIS_2014_21_1_a7/

[1] O. Diekmann, “Run for your life, a note on the asymptotic speed of propagation of an epidemic”, J. Differ. Equations, 33 (1979), 58–73 | DOI | MR | Zbl

[2] Y. Kuang, Delay differential equations with applications in population dynamics, Mathematics in science and engineering, Academic Press, New York, 1993, 191 pp. | MR

[3] R. M. May, Stability and complexity in model ecosystems, Princeton University Press, Princeton, 1975

[4] J. D. Murray, Mathematical biology, Springer, Berlin–Heidelberg–New York, 1993 | MR

[5] J. H. Wu, Theory and applications of partial functional differential equations, Appl. Math. Sci., 119, 1996

[6] J. H. Wu, X. F. Zou, “Traveling wave fronts of reaction-diffusion systems with delay”, J. Dyn. Differ. Equations, 13 (2001), 651–687 | DOI | MR | Zbl

[7] X. F. Zou, J. H. Wu, “Existence of traveling wave fronts in delay reaction-diffusion system via monotone iteration method”, Proc. Am. Math. Soc., 125 (1997), 2589–2598 | DOI | MR | Zbl

[8] K. Gopalsamy, Stability and oscillations in delay differential equations of population dynamics, Kluwer, Dordrecht, 1992 | MR | Zbl

[9] S. A. Gourley, J. W.-H. So, Wu Jian Hong, “Nonlocality of Reaction-Diffusion Equations Induced by Delay: Biological Modeling and Nonlinear Dynamics”, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002), v. 1, CMFD, 1, MAI, M., 2003, 84–120 | MR

[10] K. Kolmogorov, I. Petrovskii, N. Piskunov, “Étude de l'équations de la diffusion avec crossance de la quantité et son application a un probleme biologique”, Buul. Univ. Moscow. Ser. Intenat. Sec., 1:6 (1937), 1–250 | MR

[11] Kolesov Yu. S., Maiorov V. V., “Prostranstvennaja i vremennaja samoorganizacija v odnovidovom biocenoze”, Dinamika biologicheskih populjacij, Mejvuz. sb., Gorkii, 1986, 3–13 (in Russian)

[12] Kolesov Yu. S., “Matematicheskie modeli v ekologii”, Issledovanija po ustojchivosti i teorii kolebanij, Yaroslavl, 1979, 3–40 (in Russian) | MR | Zbl

[13] Svirejev Yu. M., Nelinejnye volny, dissipativnye struktury i katastrofy v ekologii, Nauka, M., 1987 (in Russian) | MR | Zbl

[14] S. A. Kashchenko, “Spatial heterogeneous structures in the simplest models with delay and diffusion”, Matem. mod., 2:9 (1990), 49–69 | MR | Zbl

[15] Goryachenko V. D., Kolchin V. A., “K dinamike chislennosti otdel'noj populjacii s uchjotom zapazdyvanija v razmnozhenii”, Nelinejnye kolebanija v zadachah ekologii, Mejvuz. sb., Yaroslavl, 1985, 23–44 (in Russian) | MR

[16] Goryachenko V. D., Zolotarev S. L., “Issledovanie dvuhtochechnoj modeli dinamiki chislennosti populjacii”, Dinamika biologicheskih populjacij, Mejvuz. Sb., Gorkii, 1986, 24–31 (in Russian)

[17] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Finite-dimensional models of diffusion chaos”, Computational Mathematics and Mathematical Physics, 50:5 (2010), 816–830 | DOI | MR | Zbl

[18] Glyzin S. D., “Dimensional Characteristics of Diffusion Chaos”, Modeling and Analysis of Information Systems, 20:1 (2013), 30–51 (in Russian)

[19] Kashchenko S. A., “Issledovanie metodami bol'shogo parametra sistemy nelinejnyh differencial'no raznostnyh uravnenij, modelirujushhih zadachu hishhnik-zhertva”, DAN SSSR, 266:4 (1982), 792–795 | MR

[20] S. A. Kaschenko, “Ob ustanovivshikhsya rezhimakh uravneniya Khatchinsona s diffuziei”, DAN SSSR, 292:2 (1987), 327–330 (in Russian) | MR

[21] Kolesov Yu. S., “Ob ustojchivosti prostranstvenno odnorodnogo cikla v uravnenii Hatchinsona s diffuziej”, Matematicheskie modeli v biologii i medicine, 1, In-t. math. An Lit. SSR, Vilnus, 93–103 (in Russian)

[22] M. Bestehorn, E. V. Grigorieva, H. Haken, S. A. Kaschenko, “Order parameters for class-B lasers with aal ong time delayed feedback”, Physica D, 145 (2000), 111–129 | MR

[23] S. D. Glyzin, “Raznostnye approksimatsii uravneniya «reaktsiya-diffuziya» na otrezke”, Modelirovanie i analiz informatsionnykh sistem, 16:3 (2009), 96–116 (in Russian)

[24] S. D. Glyzin, “Dynamic properties of the simplest finite-difference approximations of the “reaction-diffusion” boundary value problem”, Differ. Equations, 33:6 (1997), 808–814 | MR | Zbl

[25] Vladimirov V. V., Upravlenie riskom, Nauka, M., 2000, 432 pp. (in Russian) | MR