Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2014_21_1_a7, author = {S. A. Kaschenko and V. E. Frolov}, title = {Asymptotics of a {Steady-State} {Condition} of {Finite-Difference} {Approximation} of a {Logistic} {Equation} with {Delay} and {Small} {Diffusion}}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {94--114}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2014_21_1_a7/} }
TY - JOUR AU - S. A. Kaschenko AU - V. E. Frolov TI - Asymptotics of a Steady-State Condition of Finite-Difference Approximation of a Logistic Equation with Delay and Small Diffusion JO - Modelirovanie i analiz informacionnyh sistem PY - 2014 SP - 94 EP - 114 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2014_21_1_a7/ LA - ru ID - MAIS_2014_21_1_a7 ER -
%0 Journal Article %A S. A. Kaschenko %A V. E. Frolov %T Asymptotics of a Steady-State Condition of Finite-Difference Approximation of a Logistic Equation with Delay and Small Diffusion %J Modelirovanie i analiz informacionnyh sistem %D 2014 %P 94-114 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2014_21_1_a7/ %G ru %F MAIS_2014_21_1_a7
S. A. Kaschenko; V. E. Frolov. Asymptotics of a Steady-State Condition of Finite-Difference Approximation of a Logistic Equation with Delay and Small Diffusion. Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 1, pp. 94-114. http://geodesic.mathdoc.fr/item/MAIS_2014_21_1_a7/
[1] O. Diekmann, “Run for your life, a note on the asymptotic speed of propagation of an epidemic”, J. Differ. Equations, 33 (1979), 58–73 | DOI | MR | Zbl
[2] Y. Kuang, Delay differential equations with applications in population dynamics, Mathematics in science and engineering, Academic Press, New York, 1993, 191 pp. | MR
[3] R. M. May, Stability and complexity in model ecosystems, Princeton University Press, Princeton, 1975
[4] J. D. Murray, Mathematical biology, Springer, Berlin–Heidelberg–New York, 1993 | MR
[5] J. H. Wu, Theory and applications of partial functional differential equations, Appl. Math. Sci., 119, 1996
[6] J. H. Wu, X. F. Zou, “Traveling wave fronts of reaction-diffusion systems with delay”, J. Dyn. Differ. Equations, 13 (2001), 651–687 | DOI | MR | Zbl
[7] X. F. Zou, J. H. Wu, “Existence of traveling wave fronts in delay reaction-diffusion system via monotone iteration method”, Proc. Am. Math. Soc., 125 (1997), 2589–2598 | DOI | MR | Zbl
[8] K. Gopalsamy, Stability and oscillations in delay differential equations of population dynamics, Kluwer, Dordrecht, 1992 | MR | Zbl
[9] S. A. Gourley, J. W.-H. So, Wu Jian Hong, “Nonlocality of Reaction-Diffusion Equations Induced by Delay: Biological Modeling and Nonlinear Dynamics”, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002), v. 1, CMFD, 1, MAI, M., 2003, 84–120 | MR
[10] K. Kolmogorov, I. Petrovskii, N. Piskunov, “Étude de l'équations de la diffusion avec crossance de la quantité et son application a un probleme biologique”, Buul. Univ. Moscow. Ser. Intenat. Sec., 1:6 (1937), 1–250 | MR
[11] Kolesov Yu. S., Maiorov V. V., “Prostranstvennaja i vremennaja samoorganizacija v odnovidovom biocenoze”, Dinamika biologicheskih populjacij, Mejvuz. sb., Gorkii, 1986, 3–13 (in Russian)
[12] Kolesov Yu. S., “Matematicheskie modeli v ekologii”, Issledovanija po ustojchivosti i teorii kolebanij, Yaroslavl, 1979, 3–40 (in Russian) | MR | Zbl
[13] Svirejev Yu. M., Nelinejnye volny, dissipativnye struktury i katastrofy v ekologii, Nauka, M., 1987 (in Russian) | MR | Zbl
[14] S. A. Kashchenko, “Spatial heterogeneous structures in the simplest models with delay and diffusion”, Matem. mod., 2:9 (1990), 49–69 | MR | Zbl
[15] Goryachenko V. D., Kolchin V. A., “K dinamike chislennosti otdel'noj populjacii s uchjotom zapazdyvanija v razmnozhenii”, Nelinejnye kolebanija v zadachah ekologii, Mejvuz. sb., Yaroslavl, 1985, 23–44 (in Russian) | MR
[16] Goryachenko V. D., Zolotarev S. L., “Issledovanie dvuhtochechnoj modeli dinamiki chislennosti populjacii”, Dinamika biologicheskih populjacij, Mejvuz. Sb., Gorkii, 1986, 24–31 (in Russian)
[17] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Finite-dimensional models of diffusion chaos”, Computational Mathematics and Mathematical Physics, 50:5 (2010), 816–830 | DOI | MR | Zbl
[18] Glyzin S. D., “Dimensional Characteristics of Diffusion Chaos”, Modeling and Analysis of Information Systems, 20:1 (2013), 30–51 (in Russian)
[19] Kashchenko S. A., “Issledovanie metodami bol'shogo parametra sistemy nelinejnyh differencial'no raznostnyh uravnenij, modelirujushhih zadachu hishhnik-zhertva”, DAN SSSR, 266:4 (1982), 792–795 | MR
[20] S. A. Kaschenko, “Ob ustanovivshikhsya rezhimakh uravneniya Khatchinsona s diffuziei”, DAN SSSR, 292:2 (1987), 327–330 (in Russian) | MR
[21] Kolesov Yu. S., “Ob ustojchivosti prostranstvenno odnorodnogo cikla v uravnenii Hatchinsona s diffuziej”, Matematicheskie modeli v biologii i medicine, 1, In-t. math. An Lit. SSR, Vilnus, 93–103 (in Russian)
[22] M. Bestehorn, E. V. Grigorieva, H. Haken, S. A. Kaschenko, “Order parameters for class-B lasers with aal ong time delayed feedback”, Physica D, 145 (2000), 111–129 | MR
[23] S. D. Glyzin, “Raznostnye approksimatsii uravneniya «reaktsiya-diffuziya» na otrezke”, Modelirovanie i analiz informatsionnykh sistem, 16:3 (2009), 96–116 (in Russian)
[24] S. D. Glyzin, “Dynamic properties of the simplest finite-difference approximations of the “reaction-diffusion” boundary value problem”, Differ. Equations, 33:6 (1997), 808–814 | MR | Zbl
[25] Vladimirov V. V., Upravlenie riskom, Nauka, M., 2000, 432 pp. (in Russian) | MR