Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2014_21_1_a5, author = {S. V. Aleshin and S. A. Kaschenko}, title = {Local {Dynamics} of a {Logistic} {Equation} with {Delay}}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {73--88}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2014_21_1_a5/} }
S. V. Aleshin; S. A. Kaschenko. Local Dynamics of a Logistic Equation with Delay. Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 1, pp. 73-88. http://geodesic.mathdoc.fr/item/MAIS_2014_21_1_a5/
[1] S. Kakutani, L. Markus, “On the non-linear difference-differential equation $y'(t)=(a-by(t-\tau))y(t)$. Contributions to the theory of non-linear oscillations”, Ann. Math. Stud., IV, Princeton University Press, Princeton, 1958, 1–18 | MR
[2] G. S. Jones, “The existence of periodic solutions of $f'(x)=-\alpha f(x-1)[1+f(x)]$”, J. Math. Anal. and Appl., 5 (1962), 435–450 | DOI | MR | Zbl
[3] S. A. Kashchenko, “Asymptotics of the Solutions of the Generalized Hutchinson Equation”, Automatic Control and Computer Science, 47:7 (2013), 470–494 | DOI
[4] Kashchenko S. A., “O periodicheskikh resheniyakh uravneniya $x'(t)=-lx(t-1)[1+x(t)]$”, Issledovaniya po ustoychivosti i teorii kolebaniy, YarGU, Yaroslavl, 1978, 110–117 (in Russian)
[5] Kashchenko S. A., “Primenenie metoda normalizatsii k izucheniyu dinamiki differentsialno-raznostnykh uravneniy s malym mnozhitelem pri proizvodnoy”, Dif. uravneniya, 25:8 (1989), 1448–1451 (in Russian) | MR
[6] S. A. Kaschenko, “Normalisation in the systems with small diffusion”, Int. J. of Bifurcation and chaos, 6:7 (1996), 1093–1109 | DOI | MR | Zbl
[7] S. A. Kashchenko, “The Ginzburg–Landau equation as a normal form for a second-order difference-differential equation with a large delay”, Computational Mathematics and Mathematical Physics, 38:3 (1998), 443–451 | MR | Zbl
[8] I. S. Kashchenko, “Asymptotic analysis of the behavior of solutions to equations with large delay”, Doklady Mathematics, 78:1 (2008), 570–573 | DOI | MR | Zbl
[9] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Extremal dynamics of the generalized Hutchinson equation”, Computational Mathematics and Mathematical Physics, 49:1 (2009), 71–83 | DOI | MR | Zbl
[10] Glyzin S. D., “A registration of age groups for the Hutchinson's equation”, Modeling and Analysis of Information Systems, 14:3 (2007), 29–42 (in Russian) | MR
[11] J. Hale, Theory of Functional Differential Equations, Springer-Verlag, 1977 | MR | Zbl
[12] Ph. Hartman, Ordinary differential equations, Wiley, New York, 1964 | MR | Zbl
[13] Bryuno A. D., Lokalnyy metod nelineynogo analiza differentsialnykh uravneniy, Nauka, M., 1979 (in Russian) | MR
[14] Glyzin S. D., Kolesov A. Yu., Lokalnye metody analiza dinamicheskikh sistem, uchebnoe posobie, YarGU, Yaroslavl, 2006, 92 pp. (in Russian)
[15] Bautin N. N., Leontovich E. A., Metody i priemy kachestvennogo issledovaniya dinamicheskikh sistem na ploskosti, Nauka, M., 1990 (in Russian) | MR | Zbl
[16] Glyzin S. D., “Difference approximations of “reaction-diffusion” equation on a segment”, Modeling and Analysis of Information Systems, 16:3 (2009), 96–116 (in Russian)
[17] E. Hairer, G. Wanner, S. P. Norsett, Solving Ordinary Differential Equations I. Nonstiff Problems, Springer Series in Computational Mathematics, 2ed., revised, Springer, 2008 | MR