The Influence of Delayed Feedback Control on Stabilization of Periodic Orbits
Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 1, pp. 53-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we solve problems of stabilization of unstable cycle by the delay feedback. We study a model equation with qubic nonlinearity. In this case only one multiplicator is located outside a unit circle. Delay time is proportional to the cycle period. The $D$-partition of the parameter plane is obtained. The main result is analytically found conditions for parameters of delay control such that the initial cycle is stable. Also, we have found necessary and sufficient conditions of solvability of the stabilization problem. As a consequence, the problem of stablity of the Stuart–Landau equation periodic solution is completely solved.
Keywords: Stuart–Landau equation, delay control, cycle stabilization, multiplicators.
@article{MAIS_2014_21_1_a3,
     author = {V. G. Bogaevskaya and I. S. Kashchenko},
     title = {The {Influence} of {Delayed} {Feedback} {Control} on {Stabilization} of {Periodic} {Orbits}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {53--65},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2014_21_1_a3/}
}
TY  - JOUR
AU  - V. G. Bogaevskaya
AU  - I. S. Kashchenko
TI  - The Influence of Delayed Feedback Control on Stabilization of Periodic Orbits
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2014
SP  - 53
EP  - 65
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2014_21_1_a3/
LA  - ru
ID  - MAIS_2014_21_1_a3
ER  - 
%0 Journal Article
%A V. G. Bogaevskaya
%A I. S. Kashchenko
%T The Influence of Delayed Feedback Control on Stabilization of Periodic Orbits
%J Modelirovanie i analiz informacionnyh sistem
%D 2014
%P 53-65
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2014_21_1_a3/
%G ru
%F MAIS_2014_21_1_a3
V. G. Bogaevskaya; I. S. Kashchenko. The Influence of Delayed Feedback Control on Stabilization of Periodic Orbits. Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 1, pp. 53-65. http://geodesic.mathdoc.fr/item/MAIS_2014_21_1_a3/

[1] H. G. Schuster, Handbook of Chaos Control, 1st edition, Wiley-VCH, Weinheim, 1999 | Zbl

[2] D. J. Gauthier, “Resource letter: Controlling chaos”, Am. J. Phys., 71 (2003), 750 | DOI

[3] K. Pyragas, “Continious control of chaos by self-controlling feedback”, Phys. Lett. A, 170 (1992), 421 | DOI

[4] H. Nakajima, Y. Ueda, “Limitation of generalized delayed feedback control”, Physica D, 111 (1998), 143 | DOI | MR | Zbl

[5] H. Nakajima, “On analytical properties of delayed feedback control of chaos”, Phys. Lett. A, 232 (1997), 207 | DOI | MR | Zbl

[6] B. Fiedler, V. Flunkert, V. Georgi, P. Hovel, E. Scholl, “Refuting the odd number limitation of time-delayed feedback control”, Phys. Rev. Lett., 98 (2007) | DOI | Zbl

[7] B. Fiedler, V. Flunkert, M. Georgi, P. Hovel, E. Scholl, “Beyond the odd-number limitation of time-delayed feedback control”, Handbook of Chaos Control, ed. E. Scholl, Wiley-VCH, Weinheim, 2008, 73–84 | Zbl

[8] V. Flunkert, Delay-coupled complex systems and applications to lasers, Springer-Verlag, Berlin Heidelberg, 2011 | MR | Zbl

[9] A. D. Bruno, The Local Method of Nonlinear Analysis of Differential Equations, 1 edition, Springer, 1989 | MR | MR

[10] Arnold V. I., Additional chapters of theory of ordinary differential equation, Nauka, M., 1978 (in Russian) | MR

[11] I. S. Kashchenko, “Dynamics of an Equation with a Large Coefficient of Delay Control”, Doklady Mathematics, 83:2 (2011), 258–261 | DOI | MR | Zbl

[12] A. A. Kashchenko, “Stability of the Simplest Periodic Solutions in the Stuart–Landau Equation with Large Delay”, Automatic Control and Computer Sciences, 47:7 (2013), 566–570 | DOI

[13] Glazkov D. V., Kaschenko S. A., “Local dynamics of DDE with large delay in the vicinity of the self-similar cycle”, Modeling and analysis of information systems, 17:3 (2010), 38–47 (in Russian)

[14] Kaschenko I. S., Kaschenko S. A., “Asymptotic of difficult spatiotemporal structures in systems with big delay”, News of Higher Education «Applied Nonlinear Dynamics», 16:4 (2008), 137–146 (in Russian)

[15] Glazkov D. V., “Local dynamics of an equation with long delay feedback”, Modeling and analysis of information systems, 18:1 (2011), 75–85 (in Russian)

[16] S. D. Glyzin, “Dynamic properties of the simplest finite-difference approximations of the “reaction-diffusion” boundary value problem”, Differential Equations, 33:6 (1997), 808–-814 | MR | Zbl

[17] Glyzin S. D., “Difference approximations of “reaction–diffusion” equation on a segment”, Modeling and Analysis of Information Systems, 16:3 (2009), 96–116 (in Russian)