Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2014_21_1_a3, author = {V. G. Bogaevskaya and I. S. Kashchenko}, title = {The {Influence} of {Delayed} {Feedback} {Control} on {Stabilization} of {Periodic} {Orbits}}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {53--65}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2014_21_1_a3/} }
TY - JOUR AU - V. G. Bogaevskaya AU - I. S. Kashchenko TI - The Influence of Delayed Feedback Control on Stabilization of Periodic Orbits JO - Modelirovanie i analiz informacionnyh sistem PY - 2014 SP - 53 EP - 65 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2014_21_1_a3/ LA - ru ID - MAIS_2014_21_1_a3 ER -
%0 Journal Article %A V. G. Bogaevskaya %A I. S. Kashchenko %T The Influence of Delayed Feedback Control on Stabilization of Periodic Orbits %J Modelirovanie i analiz informacionnyh sistem %D 2014 %P 53-65 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2014_21_1_a3/ %G ru %F MAIS_2014_21_1_a3
V. G. Bogaevskaya; I. S. Kashchenko. The Influence of Delayed Feedback Control on Stabilization of Periodic Orbits. Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 1, pp. 53-65. http://geodesic.mathdoc.fr/item/MAIS_2014_21_1_a3/
[1] H. G. Schuster, Handbook of Chaos Control, 1st edition, Wiley-VCH, Weinheim, 1999 | Zbl
[2] D. J. Gauthier, “Resource letter: Controlling chaos”, Am. J. Phys., 71 (2003), 750 | DOI
[3] K. Pyragas, “Continious control of chaos by self-controlling feedback”, Phys. Lett. A, 170 (1992), 421 | DOI
[4] H. Nakajima, Y. Ueda, “Limitation of generalized delayed feedback control”, Physica D, 111 (1998), 143 | DOI | MR | Zbl
[5] H. Nakajima, “On analytical properties of delayed feedback control of chaos”, Phys. Lett. A, 232 (1997), 207 | DOI | MR | Zbl
[6] B. Fiedler, V. Flunkert, V. Georgi, P. Hovel, E. Scholl, “Refuting the odd number limitation of time-delayed feedback control”, Phys. Rev. Lett., 98 (2007) | DOI | Zbl
[7] B. Fiedler, V. Flunkert, M. Georgi, P. Hovel, E. Scholl, “Beyond the odd-number limitation of time-delayed feedback control”, Handbook of Chaos Control, ed. E. Scholl, Wiley-VCH, Weinheim, 2008, 73–84 | Zbl
[8] V. Flunkert, Delay-coupled complex systems and applications to lasers, Springer-Verlag, Berlin Heidelberg, 2011 | MR | Zbl
[9] A. D. Bruno, The Local Method of Nonlinear Analysis of Differential Equations, 1 edition, Springer, 1989 | MR | MR
[10] Arnold V. I., Additional chapters of theory of ordinary differential equation, Nauka, M., 1978 (in Russian) | MR
[11] I. S. Kashchenko, “Dynamics of an Equation with a Large Coefficient of Delay Control”, Doklady Mathematics, 83:2 (2011), 258–261 | DOI | MR | Zbl
[12] A. A. Kashchenko, “Stability of the Simplest Periodic Solutions in the Stuart–Landau Equation with Large Delay”, Automatic Control and Computer Sciences, 47:7 (2013), 566–570 | DOI
[13] Glazkov D. V., Kaschenko S. A., “Local dynamics of DDE with large delay in the vicinity of the self-similar cycle”, Modeling and analysis of information systems, 17:3 (2010), 38–47 (in Russian)
[14] Kaschenko I. S., Kaschenko S. A., “Asymptotic of difficult spatiotemporal structures in systems with big delay”, News of Higher Education «Applied Nonlinear Dynamics», 16:4 (2008), 137–146 (in Russian)
[15] Glazkov D. V., “Local dynamics of an equation with long delay feedback”, Modeling and analysis of information systems, 18:1 (2011), 75–85 (in Russian)
[16] S. D. Glyzin, “Dynamic properties of the simplest finite-difference approximations of the “reaction-diffusion” boundary value problem”, Differential Equations, 33:6 (1997), 808–-814 | MR | Zbl
[17] Glyzin S. D., “Difference approximations of “reaction–diffusion” equation on a segment”, Modeling and Analysis of Information Systems, 16:3 (2009), 96–116 (in Russian)